US 20190243795A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0243795 A1l

Oppl (43) Pub. Date: Aug. 8, 2019
(54) DEDICATED OR INTEGRATED ADAPTER (52) US. CL
CARD CPC ... GOG6F 13/4068 (2013.01); GOGF 13/1663
(2013.01); GO6F 9/505 (2013.01); GO6F
(71) Applicant: Xephor Solutions GmbH, Purkersdorf 13/4282 (2013.01)
(AT) (57) ABSTRACT

. ; An adapter card including a processing unit, an assigned
(72) Inventor: - Konstantin Oppl, Purkersdorf (AT) memory and a system bus interface are disclosed. The
system bus interface is connectable to at least one system
bus of a primary computer system providing a connection to
(21)  Appl. No.: 15/887,633 a numbef)r ofag}t] leastp one Zentralpprocessfi%ng units of the
primary computer system, the number of at least one central
. rocessing units providing a plurality of processing entities.
(22) Filed: Feb. 2, 2018 Iéonﬁgura%ion dalt)a storedgin It)he assglgne}i) memor}jg includes
data defining all processing entities of all central processing
units of the central computer system. The adapter card is
Publication Classification operative to perform computations including: obtaining a
system object representing a callable unit of a program from
(51) Int. CL a program environment, transforming the system object into
GOGF 13/40 (2006.01) a plurality of threads, each thread being executable by one
GO6F 13/42 (2006.01) processing entity, assigning each thread to one processing
GOG6F 9/50 (2006.01) entity, and transmitting each thread to the assigned process-

GO6F 13/16 (2006.01) ing entity for execution.

N

nnnnnnnnanaoAannanna




Patent Application Publication  Aug. 8,2019 Sheet 1 of 3 US 2019/0243795 A1

IN

Fig. 1



Aug. 8,2019 Sheet 2 of 3 US 2019/0243795 Al

Patent Application Publication

- — -

——~

o

2L S —

A
IENA Y
L 18 =
T
,,,,,,,,,,

Fig. 2



Patent Application Publication

15 -

Aug. 8,2019 Sheet 3 of 3

US 2019/0243795 Al

(...)

f(...)

Fig. 3

17



US 2019/0243795 Al

DEDICATED OR INTEGRATED ADAPTER
CARD

TECHNICAL FIELD

[0001] The present teachings relate generally to parallel
computing, and more particularly to adapter cards (e.g.,
dedicated, integrated, etc.) for forming computer grid struc-
tures.

BACKGROUND

[0002] To increase the hardware power, modern comput-
ers utilize a plurality of parallel CPUs (Multi-CPU), usually
having multiple cores (Multi-CORE) which can be adapted
to handle a plurality of parallel threads of execution in one
core (Multi-Hardware-Threads). To increase the calculation
power even more, a plurality of computers can be connected
over local or wide area networks to form a grid to enable
high performance computing. Complex computational tasks
can be calculated in a parallel manner on a plurality of
computers connected in a grid.

[0003] To deploy the full hardware power of such com-
puter systems and grids computer programs have to be
“tailored” for specific computer or grid architecture. There
are several tools and methods for implementing a parallel
execution, which are defined in parallel execution models,
e.g. POSIX threads, JAVA threads, more object oriented
methods like boost library, which are difficult to handle also
for a talented and experienced programmer. Other
approaches that could be easier to handle, like JAVA and
NET solutions, are actually unacceptable for most high
performance computing tasks, as they are by default to slow.
[0004] Therefore many problems arise from parallel com-
puting in real world programming, e.g. that a diligently
designed software is not running with the right performance
or that a program is not scalable over nodes in a grid, CPUs
in a node, or Cores in a CPU. Software systems for parallel
execution often have a high defect rate, are hard to reuse or
debug, etc.

SUMMARY

[0005] The needs set forth herein as well as further and
other needs and advantages are addressed by the present
embodiments, which illustrate solutions and advantages
described below.

[0006] Current solutions are working with direct usage of
parallelization technologies, like threads, processes, sema-
phore, shared memory, mutex, OpenMPI, OpenMP, etc., by
using different system implementations mentioned above.
This approach usually creates an unreliable code, which has
a high defect rate, stays below the expectations of perfor-
mance, and leads mostly to an unreadable code, which is
hard to attain or to extend.

[0007] It is a goal of the present teachings to provide
apparatus and methods to improve parallel computing solu-
tions and in particular to reduce the defect rate and increase
the scalability and portability of programs running on par-
allel computer systems.

[0008] In a first aspect, these goals are achieve by an
adapter card having a processing unit, an assigned memory,
and a system bus interface. The system bus interface is
connectable to at least one system bus of a primary computer
system providing a connection to a number of at least one
central processing units of the primary computer system, the

Aug. 8, 2019

number of at least one central processing units providing a
plurality of processing entities. Configuration data stored in
the assigned memory comprises data defining all processing
entities of all central processing units of the primary com-
puter system. The adapter card is operative to perform
computations comprising the following:
[0009] obtaining a system object representing a callable
unit of a program from a program environment,
[0010] transforming the system object into a plurality of
threads, each thread being executable by one process-
ing entity,
[0011] assigning each thread to one processing entity,
[0012] transmitting each thread to the assigned process-
ing entity for execution,
[0013] receiving computation results from each pro-
cessing entity,
[0014] determining an outcome of the system object
based on the computation results,
[0015] returning the outcome to the program environ-
ment.
[0016] Other embodiments of the system and method are
described in detail below and are also part of the present
teachings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The present teachings will further be described in
terms of non-restricting examples of preferred embodi-
ments, which are given in connection with the accompany-
ing drawings, wherein

[0018] FIG. 1 depicts an adapter card according to the
present teachings in a schematic representation,

[0019] FIG. 2 shows a schematic overview over a grid-
computing infrastructure,

[0020] FIG. 3 shows a schematic block diagram illustrat-
ing the structure and execution of a software program.

DETAILED DESCRIPTION

[0021] The present teachings are described more fully
hereinafter with reference to the accompanying drawings, in
which the present embodiments are shown. The following
description is presented for illustrative purposes only and the
present teachings should not be limited to these embodi-
ments. Any computer configuration and architecture satis-
fying the speed and interface requirements herein described
may be suitable for implementing the system and method of
the present embodiments.

[0022] In compliance with the statute, the present teach-
ings have been described in language more or less specific
as to structural and methodical features. It is to be under-
stood, however, that the present teachings are not limited to
the specific features shown and described, since the systems
and methods herein disclosed comprise preferred forms of
putting the present teachings into effect.

[0023] For purposes of explanation and not limitation,
specific details are set forth such as particular architectures,
interfaces, techniques, etc., in order to provide a thorough
understanding. In other instances, detailed descriptions of
well-known devices, circuits, and methods are omitted so as
not to obscure the description with unnecessary detail.
[0024] Generally, all terms used in the claims are to be
interpreted according to their ordinary meaning in the tech-
nical field, unless explicitly defined otherwise herein. All
references to a/an/the element, apparatus, component,



US 2019/0243795 Al

means, step, etc. are to be interpreted openly as referring to
at least one instance of the element, apparatus, component,
means, step, etc., unless explicitly stated otherwise. The
steps of any method disclosed herein do not have to be
performed in the exact order disclosed, unless explicitly
stated. The use of “first”, “second,” etc. for different fea-
tures/components of the present disclosure are only intended
to distinguish the features/components from other similar
features/components and not to impart any order or hierar-
chy to the features/components.

[0025] FIG. 1 shows an inventive adapter card 1 compris-
ing a processing unit 2, an assigned memory 3, a network
interface 5, and a system bus interface 4.

[0026] The adapter card 1 can be implemented as a
dedicated (or discrete) adapter card 1, which is a physical
hardware unit e.g. in form of an expansion card, expansion
board or accessory card. The dedicated adapter card 1 may
comprise a printed circuit board that has a system bus
interface 4 to be inserted into an electrical connector, or
expansion slot on a computer motherboard, backplane or
riser card to add functionality to the computer system. The
processing unit 2, the memory 3, and the network interface
5 may be provided on the printed circuit board, e.g. in the
form of an electronic circuit and integrated circuit elements.
The electrical connectors of the system bus interface 4 can
provide connectivity to the system bus of the computer
system either directly or via a card bus or expansion bus
according to well-known standards.

[0027] The adapter card 1 can also be implemented as an
integrated or “virtual” adapter card, i.e. the elements of the
adapter card 1 are integrated into the motherboard of the
computer system. In this case the function of processing unit
2 of the adapter card 1 can be performed by the CPU of the
computer system and the dedicated memory 3 can be a part
of the computer memory. The readily existing connection of
the CPU to the system bus can be used as the system bus
interface 4. As a network interface 5 any network interface
available on the computer system can be used. The embodi-
ment as an integrated adapter card 1 allows for a software
implementation of the inventive adapter card 1 on a variety
of suitable computer hardware.

[0028] The network interface 5 provides a data connection
to remote hardware units using a suitable network protocol,
for example a network protocol of the internet protocol suite,
such as TCP/IP or UDP/IP. Nonetheless the present teach-
ings are not restricted to these protocols and any network
protocol known in the art can be used.

[0029] FIG. 2 shows an exemplary distributed system or
grid computing structure 14 that can be used according to the
present teachings.

[0030] A primary computer system 7 is provided with the
(dedicated or integrated) adapter card 1, which is connected
to a system bus 6 of the computer system 7 via the system
bus interface 4. The primary computer system 7 has at least
one central processing unit (CPU) 8, also connected to the
system bus 6 in a known manner. Also at least one computer
memory 12 is connected to the CPU 8 and the adapter card
1 via the system bus 6.

[0031] The CPU 8 provides a number of processing enti-
ties 11 to the operating system of the computer system 7. The
term “processing entity” as it is used in the context of this
disclosure describes the smallest entity of a CPU that can
independently read and execute program instructions. Each

Aug. 8, 2019

processing entity 11 appears to the operating system as an
independent processor that can be addressed in a parallel
manner.

[0032] Each CPU 8 provides at least one processing entity
11, but in the context of high performance computing
modern computer systems usually have more than one
processing entity 11. For example the CPU 8 can be a
multicore-processor having a plurality of cores 13. A core is
an independent actual processing unit within the CPU 8 that
can read and execute program instructions independently
from other cores of the CPU 8. Further each core 13 can
allow multi-threading, i.e. one physical core appears as
multiple processing entities 11 to the operating system,
sometimes referred to as “hardware threads”. In other cases
each core 13 of the CPU 8 can be a single processing entity
11 or the CPU 8 itself can be a single processing entity 11.
[0033] The primary computer system 7 can additionally
have one or more secondary CPUs 8', one of which is
schematically shown in FIG. 2 in dotted lines. The second-
ary CPU 8' (and any further secondary CPU, as the case may
be) can essentially have the same features as the first CPU
8 and provides one or more processing entities 11' in one or
more cores 13",

[0034] The network interface 5 provides a connection to a
number of remote computer systems 107, 207, 1007 via a
network 10. In FIG. 2 a first remote computer system 107,
a second remote computer system 207 and a tenth remote
computer system 1007 are shown in an exemplary manner
and it should be noted that any number of computer systems
can be used in connection with the inventive systems and
methods. Each of the remote computer systems 101, 201,
1001 comprises one remote adapter card 101, 201, 1001,
each of them being connected to the network 10 via their
respective network interfaces 105, 205, 1005. All adaptor
cards 1, 101, 201, 1001 can send and receive data via the
network 10. The remote adapter cards 101, 201, 1001 can,
independently from each other, be implemented as dedicated
or integrated adapter cards.

[0035] The remote computer systems 107, 207, 1007 can
be identical to or different from the primary computer
system 7 and they particularly can have all features that are
described above in connection with the description of the
primary computer 7, e.g. a computer memory 112, 212,
1012, a system bus 106, 206, 1006. Each of the remote
computer systems 107, 207, 1007 has at least one remote
central processing unit 108, 208, 1008 providing at least one
remote processing entity 111, 211, 1011. Some or all of the
remote computer systems 107, 207, 1007 can additionally
have one or more secondary CPUs (similar to the secondary
CPU 8' of the primary computer system 7), which are not
depicted in FIG. 2 for reasons of simplicity and clarity.
[0036] Returning to the detailed depiction of the adapter
card in FIG. 1, the adapter card 1 comprises configuration
data 9 which is stored in the assigned memory 3 of the
adapter card 1. The configuration data 9 can, for example, be
set up in the form of an .ini-file or another suitable data
format.

[0037] The configuration data 9 defines the hardware
environment of the adapter card 1, the number and commu-
nication addresses of all other remote adapter cards 101,
201, 1001 that are available in the grid computing structure
14 (see again FIG. 2) and the hardware environments of all
remote computer systems 107, 207, 1007 in this grid com-
puting structure 14. Further the configuration data 9 may



US 2019/0243795 Al

comprise all necessary information needed by the adapter
card 1 to address every single processing entity in the grid
computing structure 14, either within the primary computer
system 7 via the system bus 6, or within any other remote
computer system 107, 207, 1007 in the grid via the network
10 and the respective remote adapter card 101, 201, 1001
which is connected to the respective system bus 106, 206,
1006 of the respective remote computer system 107, 207,
1007 via its own system bus interface.

[0038] The description herein describes a primary com-
puter system 7 comprising a primary adapter card 1 and a
plurality of remote computer systems 107, 207, 1007 each
having a remote adapter card 101, 201, 1001. Nonetheless is
obvious to the person skilled in the art that all adapter cards
1,101, 201, 1001 could be essentially identical, so that each
of'the remote computer systems 107,207, 1007, for example
the second remote computer system 202, could be used as a
primary computer system, in which case all other computer
systems 7, 107 and 1007 in the grid computing structure 14
would act as a remote computer system. The distinction
between “primary” and “remote” items is only given for
comprehensibility and clarity of the description and should
not be construed in a restrictive manner.

[0039] The configuration data 9 of an adaptor card 1 can
comprise different definitions for a direct hardware environ-
ment and a remote hardware environment. The term “direct
hardware environment” designates the hardware within the
same computer system 7 as the respective adaptor card 1, in
particular the CPUs 8, 8' and computer memory 12 that is
connected to the adaptor card 1 via the system bus interface
4 of this adaptor card 1. Conversely, the term “remote
hardware environment” designates all hardware entities that
can be addressed via the network interface 5 and a remote
adaptor card 101, 201, 1001, particularly the CPUs 108, 208,
1008 and computer memories of the remote computer sys-
tems 107, 207, 1007.

[0040] An identical set of configuration data 9 can be
provided for all adaptor cards in the grid computing struc-
ture 14. In a different approach configuration data 9 stored
in one adaptor card 1 is not identical to the configuration
data 9 that is stored on the other adaptor cards 101, 201,
1001 in the grid computing structure 14. Nonetheless the
configuration data of all remote adapter cards 1, 101, 201,
1001 in the same grid computing structure 14 may be
consistent with each other in that they describe the same grid
computing structure 14, i.e. the configuration data 9 pro-
vides detailed information of all processing entities 11, 111,
211, 1011 in the grid computing structure 14 to all (primary
and remote) adapter cards 1, 101, 201, 1001.

[0041] It should be noted that the grid computing structure
14 is not defined by the units of hardware (i.e. computer
systems 7, 107, 207, 1007) that are physically connected in
the same network 10. This would obviously not be possible,
for example in the case where the network 10 is the internet.
Rather the grid computing structure 14 may be defined by
one set of common configuration data 9 that is used by a
number of adapter cards 1, 101, 201, 1001. This allows an
easy change or modification of a grid computing structure
14. For example a second set of configuration data 9 could
be shared by the primary adapter card 1 and the second
remote adaptor card 201, which would define a grid com-
puting structure 14' that comprises only the primary com-
puter system 7 and the second remote computer system 207.
Once it is defined, a grid computing structure 14, 14' can be

Aug. 8, 2019

reused for other software programs. New definitions for a
new grid computing structure can be based on an existing
definition as a template.

[0042] As will be understood by the following description
of preferred methods of operation that can be implemented
with the inventive systems the definition of the grid com-
puting structure 14 can be chosen independently from the
software program that is to be executed in a parallel manner
by the grid computing structure 14. This allows the pro-
grammer of the software program to focus his efforts on the
abstract parallelization strategies without taking into
account existing hardware restrictions.

[0043] In the following, a general concept of a computer
software structure shall be described in a generic manner
with reference to FIG. 3. Independent of a specific program-
ming language, any software program can be seen as a
sequence f( . . . ) of program instructions, which can have a
very complex structure. The sequence f{ . . . ) can be
structured into separate callable units f;( ... ) (i=1 . . .n) that
perform a specific task. Callable units are often also referred
to as subroutines, procedures, functions, routines, methods,
or subprograms. By designing the structure and parameters
of the callable units programmers create the software pro-
gram.

[0044] Callable units are written according to a program-
ming language. To be executed by the hardware of a
computer system the callable units first have to be translated
into a system object O” containing object code, usually in a
machine code language. This translation is known as com-
piling. Upon execution, this system object O” is further
transformed into a number of Threads of execution O,/ (k=0
[0045] The term “thread of execution” (sometimes simply
referred to as “thread”), as it is used in the context of this
disclosure is defined as the smallest sequence of pro-
grammed instructions that can be managed by a scheduler of
an operating system. In the context of the present disclosure
each thread of execution will be executed by one processing
entity 11.

[0046] In the context of the concept of computer software
shown in FIG. 3, three domains can be established for the
design and execution of computer programs: Firstly a soft-
ware program environment 15, secondly a machine code
environment 16 and thirdly a hardware environment 17.
[0047] To date for the development of software that is
especially suitable for parallel computing, programmers
have to take into account not only the software program
environment 15, with which they are very familiar, but also
the machine code environment 16 and the hardware on
which the software runs, which often poses difficulties also
to experienced programmers. The need to take into account
the specific machine code environment 16 (and also a
specific hardware environment 17) for the creation of the
software (i.e. in the software program environment 15)
inevitably results in complicated and bulky code. The effects
that a change in the hardware environment 15 has on the
performance of the software are often unpredictable so that
the software has to be adapted every time the hardware
environment 17 changes.

[0048] The present teachings allow a clear separation of
the abstract parallelization of the algorithm and the execu-
tion of this software in the machine code environment 16
and hardware environment 17. The programmer creates the
software program by defining and structuring the callable



US 2019/0243795 Al

units. To define the abstract parallelization the programmer
first analyses the problem domain and decides which call-
able units have to be active (autonomously running) and
which callable units have to be passive (only attached to the
active objects as e.g. data containers).

[0049] The term “abstract parallelization”, as it is used in
the context of the present disclosure, refers to the analyza-
tion of the parallelization of an algorithm and the breakdown
into a set of sub-algorithms that are designated as synchro-
nous or asynchronous parallel algorithms. Particularly this
can be done by code generation by defining the sub-algo-
rithms as callable units.

[0050] The programmer defines the properties of the
active callable units (for example what does the callable unit
execute, which data are needed, etc.). He decides which
active callable unit can be split in synchronously running
sub processes or asynchronously running sub processes. He
is doing only the abstract process of understanding the
parallelization in a meta programming language, which can
be close to the C++ or CORBA idl language. For example
code generation can be done by a code generator, which
reads the callable units and creates a ready to compile and
link C++ class, which fits into an active system object
adapter of the adapter card. The code generation “enve-
lopes” the active callable units with the code that is under-
stood by the adapter card.

[0051] Upon execution of the software program, the
sequence f{ . . . ) of callable units f;( . . . ) gets translated into
a set of system objects O, that are defined in a form that can
be processed by the adapter card 1.

[0052] The system objects O” include all definitions of the
abstract parallelization so that the adapter card 1 is able to
understand the restrictions and mutual dependencies of the
system objects and the protected shared data segments that
are necessary for execution of the system objects.

[0053] Based on this information the adapter card 1 trans-
forms the system objects O" into a number of threads of
execution O;”. For example the threads of execution can be
defined according to OpenMPI methods or as POSIX/
Windows Threads. In other words, the component translates
the information for the operating system and hardware
system for execution. The transformation into threads of
execution is done by algorithms that rely on the definitions
of the abstract parallelization, i.e. for this step the adapter
card 1 may not take into account the hardware resources that
are available in the grid computing structure 14, but relies on
the abstract parallelization defined by the programmer.
[0054] In the next step, which is the execution of the
threads on a CPU, the actual available hardware resources
have to be taken into account. According to the configuration
data 9 the adapter card 1 receives status messages 18 from
all remote adapter cards 101, 201, 1001 and sends respective
status messages 18 to all the remote adapter cards 101, 201,
1001 in the grid computing structure 14. These status
messages 18 contain data about the current work load and
memory usage of the respective (primary or remote) com-
puter system 7, 107, 207, 1007. The status messages 18 are
preferably sent according to a regular scheme so that every
adapter card 1, 101, 201, 1001 can maintain a current
workload table in which workload and memory usage data
of all computer systems in the grid computing structure 14
are recorded. Further “historic” data of the workload and
memory usage can be stored in the same way, to provide an
overview of the recent development of workload and

Aug. 8, 2019

memory usage in each computer system. The required length
of the time period that historic data are preserved may
depend on the prediction algorithms that are being used by
the adapter card 1 to predict the future workload and
memory usage which are described below. Usually a time
period of some milliseconds time, e.g. less than 10 ms into
the past, can be adequate to obtain satisfactory prediction
results.

[0055] It is desirable to keep the actuality of the workload
and memory usage data as close to real time as possible,
especially by reducing any lags that can occur in the
communication over the network 10. With a proper hard-
ware infrastructure the current workload table can be main-
tained almost in real time. The maximum time lags of the
system can be minimized by optimizing the hardware and
the operation system.

[0056] Having structured the threads of execution and
their interdependencies, the adapter card 1 may now predict
the resources that will be necessary for the execution of each
thread. Further the adapter card 1 may use a prediction
algorithm to calculate a predicted workload of the process-
ing entities 11, 111, 211, 1011 in the grid computing struc-
ture 14 and the respective memory usages of these process-
ing entities for the near future. This allows for a prediction
of the free capacities the processing entities will probably
have. Known heuristic or deterministic prediction algo-
rithms can be used for this prediction.

[0057] The adapter card now can map the necessary
resources for execution of each thread to the predicted
capacities of the processing entities. This mapping can be
done by known algorithms, e.g. randomized algorithms that
map the threads at least partly according to a random
distribution, round-robin-algorithms that assign the threads
according to a given order, etc.

[0058] According to this mapping the adapter card 1
assigns each thread O; to one processing entity 11 in the
grid computing structure 14 and transmits the threads O;” to
the assigned processing entity 11 for execution. The pro-
cessing entities 11 compute results and transmit the com-
puted results back to the adapter card 1.

[0059] The adapter card 1 can either address a processing
entity 11 within the primary computer system 7 directly via
the system bus 6, or it can address a processing entity 111,
211, 1011 in one of the remote computer systems 107, 207,
1007 by transmitting the thread of execution to the remote
adapter card 101, 201, 1001 in this computer system,
although not limited thereto. The adapter card 1 can either
transmit single threads of execution to the remote adapter
cards, or it can transmit system objects that shall be executed
by the respective remote computer system under the control
of the respective remote adapter card, although not limited
thereto.

[0060] The process of prediction of free resources and
mapping of threads according to these predictions can be
done in a highly dynamic manner, so that the adapter card 1
can react to changes of the workload that occur in one, more
or all computer systems in real time, even while the execu-
tion of a program is already running.

[0061] The adapter card 1 distributes the system objects to
and receives computation results from the processing enti-
ties 11. Further the adapter card 1 keeps track of all system
objects and threads of execution in the way of a core process
which keeps an overview over the distributed tasks.



US 2019/0243795 Al

[0062] According to the differently parallelized tasks of
execution and the core process the adapter card 1 assembles
the input and output data from the system objects and tasks
and, where appropriate, assembles them with further tasks of
execution from other system objects that are executed in a
parallel manner.

[0063] In this way the system objects (or threads of
execution, respectively) are executed on the assigned pro-
cessing entities 11 and their execution is controlled by the
core process running on the adapter card 1 through sending
control signals. The techniques that can be used for the
execution and organization of the parallel execution of
threads and/or system objects are known per se in the state
of the art. With knowledge of the teachings of this disclo-
sure, the person skilled in the art is able to select and
implement respective schemes and techniques.

[0064] The outcome of the execution is then returned to
the program environment 15.

[0065] The definition of a grid computing structure 14, 14'
can be created by the programmer independently from the
software program to be executed. To “build” a grid com-
puting structure 14, the adapter card 1 can for example read
in a file containing the definition data 9 and send the
definition data 9 to all remote adapter cards 101, 201, 1001
in the grid computing structure 14 that should be built up.
[0066] The creation of the grid computing structure 14 can
also be defined in form of a configuration script within the
software program that assigns parameters (like CPU, CORE
or hardware thread ID or network address and port) and can
be read by the adapter card 1 at the execution of the program.
Although the configuration script is a part of the software
program, it is to be noted that this definition is still inde-
pendent from the abstract parallelization and can easily be
changed without changing the abstract parallelization.
[0067] The use of configuration scripts could also allow
for a use of different definitions of grid computing structures
14, 14' within one single software program, e.g. by defining
different groups of callable units that can be performed in
parallel, each group being allocated to a different grid
computing structure 14, 14'. For the execution of the pro-
gram the adapter card 1 can maintain two or more different
grid computing structures 14, 14' while executing one soft-
ware program.

[0068] While the present teachings have been described
above in terms of specific embodiments, it is to be under-
stood that they are not limited to these disclosed embodi-
ments. Many modifications and other embodiments will
come to mind to those skilled in the art to which this
pertains, and which are intended to be and are covered by
both this disclosure and the appended claims. It is intended
that the scope of the present teachings should be determined
by proper interpretation and construction of the appended
claims and their legal equivalents, as understood by those of
skill in the art relying upon the disclosure in this specifica-
tion and the attached drawings.

LIST OF REFERENCES

[0069] adapter card 1

[0070] processing unit 2

[0071] assigned memory 3

[0072] system bus interface 4
[0073] network interface 5

[0074] system bus 6

[0075] primary computer system 7

Aug. 8, 2019

[0076] central processing unit 8
[0077] configuration data 9

[0078] network 10

[0079] processing entity 11

[0080] computer memory 12

[0081] cores 13

[0082] grid computing structure 14
[0083] software program environment 15
[0084] machine code environment 16
[0085] hardware environment 17
[0086] status messages 18

[0087] program (f)

[0088] callable unit (f))

[0089] system object (OF)

[0090] thread (O/)

What is claimed is:

1. An adapter card comprising a processing unit, an
assigned memory, and a system bus interface, wherein

the system bus interface is connectable to at least one

system bus of a primary computer system providing a
connection to a number of at least one central process-
ing units of the primary computer system, the number
of at least one central processing units providing a
plurality of processing entities,

configuration data stored in the assigned memory com-

prises data defining all processing entities of all central
processing units of the primary computer system,

the adapter card being operative to perform computations

comprising the following:

obtaining a system object representing a callable unit of
a program from a program environment,

transforming the system object into a plurality of
threads, each thread being executable by one pro-
cessing entity,

assigning each thread to one processing entity,

transmitting each thread to the assigned processing
entity for execution,

receiving computation results from each processing
entity,

determining an outcome of the system object based on
the computation results,

returning the outcome to the program environment.

2. The adapter card according to claim 1, wherein the
system object comprises at least one parallelization defini-
tion and the transforming the system object into a plurality
of threads is based at least in part on the parallelization
definition.

3. The adapter card according to claim 1, wherein the
assigning each thread to one processing entity is performed
taking into account the configuration data.

4. The adapter card according to claim 1, wherein the
adapter card is operative to receive current workload data
representing a current workload of each processing entity
and wherein the assigning each thread to one processing
entity takes into account the current workload data.

5. The adapter card according to claim 1, wherein the
assigning each thread to one processing entity, transmitting
each thread to the assigned processing entity for execution,
receiving computation results from each processing entity,
and determining an outcome of the system object based on
the computation results comprise controlling data access to
shared memory according to a parallel execution model.



US 2019/0243795 Al

6. An adapter card comprising a processing unit an
assigned memory, a network interface, and a system bus
interface, wherein

the system bus interface is connectable to at least one

system bus of a primary computer system providing a
connection to a number of at least one central process-
ing units of the primary computer system, the number
of at least one central processing units providing a
plurality of processing entities,

the network interface is adapted to provide a communi-

cation via a network to at least one of a number of
remote adapter cards, each remote adapter card being
connected to a system bus of a remote computer system
having at least one remote central processing unit
having at least one remote processing entity,
configuration data stored in the assigned memory com-
prises data defining all processing entities of all central
processing units of the primary computer system,
the configuration data) further comprises data defining all
processing entities of all remote central processing
units of all remote computer systems,

the adapter card being operative to perform computations

comprising the following:

obtaining a system object representing a callable unit of
a program from a program environment,

transforming the system object into a plurality of
threads, each thread being executable by one pro-
cessing entity,

assigning each thread to one processing entity,

transmitting each thread to the assigned processing
entity for execution,

receiving computation results from each processing
entity,

determining an outcome of the system object based on
the computation results,

returning the outcome to the program environment.

7. The adapter card according to claim 6, wherein the
adapter card is operative to receive from at least one first
remote adapter card status messages comprising current
workload data that represent a current workload of the
processing entities in the respective remote computer sys-
tem.

8. The adapter card according to claim 6, wherein the
adapter card is operative to send to at least one first remote
adapter card status messages comprising current workload
data representing a current workload of the processing
entities of the primary computer system.

9. A method for executing a program that is defined as a
structured plurality of callable units, the method performed

Aug. 8, 2019

by an adapter card having a processing unit, an assigned
memory, a network interface, and a system bus interface, the
adapter card having software executing on computer read-
able media to perform the following:

obtaining a system object representing a callable unit of a

program from a program environment,

transforming the system object into a plurality of threads,

each thread being executable by one processing entity,
assigning each thread to one processing entity,
transmitting each thread to the assigned processing entity
for execution,

receiving computation results from each processing

entity,

determining an outcome of the system object based on the

computation results,

returning the outcome to the program environment.

10. The method according to claim 9, wherein the system
object comprises at least one parallelization definition and
the transforming the system object into a plurality of threads
is based at least in part on the parallelization definition.

11. The method according to claim 9, wherein the assign-
ing each thread to one processing entity is performed taking
into account configuration data stored in the assigned
memory of the adapter card.

12. The method according to claim 9, wherein the adapter
card receives current workload data representing the current
workload of each processing entity and wherein the assign-
ing each thread to one processing entity takes into account
the current workload of each processing entity.

13. The method according to claim 9, wherein the assign-
ing each thread to one processing entity, transmitting each
thread to the assigned processing entity for execution,
receiving computation results from each processing entity,
and determining an outcome of the system object based on
the computation results comprise controlling data access to
shared memory according to a parallel execution model.

14. The method according to claim 9, wherein the adapter
card receives from at least one first remote adapter card
status messages comprising current workload data that rep-
resent a current workload of processing entities in a respec-
tive remote computer system.

15. A grid computing structure comprising a primary
computer system and a number of at least one remote
computer systems, the primary computer system and each
remote computer system comprise an adapter card according
to claim 6, wherein the network interfaces of the respective
adapter cards are adapted communicate to other adapter
cards via a network.



	Abstract
	Biblio
	Claims
	Descriptions
	Drawings

