US 20220020003A1

a9 United States
a2y Patent Application Publication o) Pub. No.: US 2022/0020003 A1

SARKAR 43) Pub. Date: Jan. 20, 2022
(54) PRIVATE KEY SECURITY IN THE CLOUD (52) US. CL

CPC ... G060 20/3674 (2013.01); HO4L 9/0825
(71) Applicant: The Boeing Company, Chicago, IL (2013.01); HO4L 9/3265 (2013.01); HO4L
(Us) 9/3218 (2013.01)

(72) Inventor: Joydeep SARKAR, Kolkata (IN) (57) ABSTRACT
(73) Assignee: ;l{}ls)Boelng Company, Chicago, IL Techniques for providing to a user with an anonymous user
signature on a message in a distributed decentralized net-
(21) Appl. No.: 17/220,333 work are presented. The techniques use a hardware security
module and a certificate authority. The certificate authority:
(22) Filed: Apr. 1, 2021 obtains a credential that includes a certificate for the user,
where the certificate includes a user public key and a
(30) Foreign Application Priority Data plurality of user attributes; receives a request for a signature
on the message, where the request includes an indication of
Jul. 18, 2020 (IN) eevereeecrecrecrececene 202011030708 a subset of the plurality of user attributes to be revealed;
A . . accesses from the hardware security module a user secret
Publication Classification key; and provides to the user at least the message signed by
(51) Int. CL the user secret key and a zero-knowledge proof that estab-
G06Q 20/36 (2006.01) lishes that the message is signed by the user secret key
HO4L 9/32 (2006.01) corresponding to the user public key in the credential

HO4L 9/08 (2006.01) without revealing the plurality of user attributes.
170
Trensaction
L1732

0 (A g
AN : /
Crgt Shared Peer | et
Pesi2 1} Ledger]
Galeway | |
Qg HH 14 104
= ‘\\ \N“& / / -
12 Orgl (rgl o7
W Peet 6012
Root CA Orgl e
\k Or? Gateway | | Fansacion
o SorE| - oy
K2 Client!
18 128 /
- y ya %
WL o 03 180
“T o P | [, /
u:t!muiul'l 0t OFg? Cateway g - Gateway
7 Vg cac i S 9
O 11 | 2eert O HSH R w | B[R 18
Clientt ¥ == | 1Sht! Sleln ;
o8 13
ff 1% 3

-

Patent Application Publication

Jan. 20,2022 Sheet 1 of 4

US 2022/0020003 A1

70
Transaction 7
Message
Signature Ml 174
Zero-
knowiedge 176
Prof
g 12 1 4
L L] .- /
Orgt Orgt Sha*ed Peer | Ce
i Peer! Paer? 1.,
transaction = Ot e N
oot - | 0l Oateway y
Client! CA f\ Orgt HM “4 /
CRED HONTB & N \ \ e H s 7
g w | o rga Vi
§ A 12471 Peert o Peer? é
”» 00 i e
;3 erfficat N E?a@f’“ \% Or? g Galeway | | fransaction
| SMN : mid © O B 02
164 K : e
User 1] g 7 Clientt
Atoutes [T~168 ! 18 28 /
¥ £ 105
108 oA 083 Org3 1%

- CA Peer2 | |, /
transaction 0@ Orgs Gty | | = > Gateway .
08 | peart Org3 HST 8 | oy | 78 AL HT
/ e 108 130 / =
(i 131
o 1%

FIG. 1

Patent Application Publication

e 3

—

.
A

f"‘

Jan. 20,2022 Sheet 2 of 4

B 207
Recelve recuest foraccount =
Provide usemame and | _~204
passwWord
Receive request it
for key pair
Generale key 208
pair
install private key In it
Hardware Security Moduls
Recelve request Py,
for credential
9
. 2
Validate request -
216
Access User secetkey |7
- 218
Generate credential -
il

Provids credential

FIG. 2

US 2022/0020003 A1

0

i
W

Patent Application Publication

Jan. 20,2022 Sheet 3 of 4

Oblanclent | _~302
aredential

Receve request | _~304
for signature

Accessclient | 306
secret key
Generatezere- | _-308
knowledge proof
Provide signed message | ~310
and zero-knowleage proof

A

300

FIG. 3

US 2022/0020003 A1

Patent Application Publication Jan. 20, 2022 Sheet 4 of 4 US 2022/0020003 A1

Recahesigned |~ 402
transaction request

%

Verfy bansagtion 404

:

Sipresponse B 406

:

Retumresponse b~ 408

A

400

FIG. 4

US 2022/0020003 Al

PRIVATE KEY SECURITY IN THE CLOUD

RELATED APPLICATION

[0001] This application claims priority to, and the benefit
of, India patent application number 202011030708, filed Jul.
18, 2020, and entitled, “Private Key Security in the Cloud”.

FIELD

[0002] This disclosure relates to asymmetric cryptography
and distributed decentralized networks, such as blockchain
networks.

BACKGROUND

[0003] “Asymmetric cryptography” refers to cryptogra-
phy that utilizes a “key pair” consisting of a “public key”
and a “private key”. Data, such as a message, may be
encrypted by applying an encryption algorithm that uses the
one of these keys to a message, and encrypted data may be
decrypted by applying a corresponding decryption algorithm
that uses the other of these keys. Asymmetric cryptography
includes such well-known algorithms as the Rivest-Shamir-
Adleman (RSA) technique, as well as the Diffie-Hellman
family of techniques.

[0004] A digital signature, or simply “signature”, is typi-
cally the result of encrypting a message (or a hash thereof)
using a private key of an asymmetric cryptographic key pair.
The corresponding public key is published or otherwise
made available by the signing entity to the verifying party.
A validating party can validate the signature on the user’s
signed message by applying the user’s public key to the
signature and comparing the result to the object or the hash
of the object, or otherwise by determining that the signature
corresponds to the object or its hash, depending on the
scheme. If the comparison results in a match, then the
signature is valid; otherwise it is invalid.

[0005] Auser’s public key may be made publicly available
in a certificate signed by a trusted entity such as a certificate
authority, for example. Such a certificate may include a copy
of the user’s public key and a plurality of attributes of the
associated user, such as the user’s name and contact infor-
mation.

[0006] Blockchain technology records transactions in an
immutable, trustworthy and decentralized manner. Digital
signatures are important for blockchains. Because block-
chain interactions typically cross secure perimeters of orga-
nizations and user domains, the secrecy of private keys for
generating digital signatures needs to be protected.

[0007] There is no standard technique for securing private
keys in a distributed and decentralized network such as a
blockchain network. Existing solutions tend to not be spe-
cific to distributed and decentralized systems. Further, there
is no known solution for keeping blockchain user’s identities
and their attributes completely secret and anonymous during
a transaction, particularly during the consensus stage.

SUMMARY

[0008] According to various examples, a method of a
certificate providing to a user an anonymous user signature
on a message in a distributed decentralized network is
presented. The method includes: obtaining, by the certificate
authority, a credential for the user, the credential comprising
a certificate signed by a root certificate authority on the
network, wherein the certificate comprises a user public key

Jan. 20, 2022

and a plurality of user attributes; receiving, by a certificate
authority on the network and from the user, a request for a
signature on the message, wherein the request comprises the
message to be signed and an indication of a subset of the
plurality of user attributes to be revealed to a recipient;
accessing, from a hardware security module on the network,
a user secret key corresponding to the user public key in the
credential; and providing, by the certificate authority and to
the user, at least the message signed by the user secret key
and a zero-knowledge proof, wherein the zero-knowledge
proof establishes that the message is signed by the user
secret key corresponding to the user public key in the
credential without revealing the plurality of user attributes,
whereby the user sends the subset of user attributes, the
zero-knowledge proof, and the message signed by the user
secret key corresponding to the user pubic key in the
credential to the recipient, who confirms at least that the
message is signed by the user secret key corresponding to
the user public key in the credential without obtaining the
plurality of user attributes.

[0009] Various optional features of the above examples
include the following. The method may include, prior to the
receiving the request for the signature: receiving, by a
certificate authority on the network and from the user, a
request for an account; and providing, to the user, a user
name and a password. The method may include, prior to the
receiving the request for the signature: generating an asym-
metric cryptographic key pair for the user, wherein the
asymmetric cryptographic key pair consists of the user
public key and the user secret key; and installing the user
secret key in the hardware security module. The method may
include providing to the user an identification of a memory
location of the hardware security module at which the user
secret key is stored. The network may include a blockchain
network. The message may include a proposed cryptocur-
rency transaction in the blockchain network. The method
may include, prior to the receiving the request for the
signature: accessing, from the hardware security module, the
user secret key; and generating, using the user secret key, the
credential for the user. The hardware security module may
be protected by at least one of role-based access control or
attribute-based access control. The subset of the plurality of
user attributes may conform to a presentation policy speci-
fying attributes required to be disclosed for a specified
message type. The zero-knowledge proof may further estab-
lish that the subset of the plurality of user attributes com-
prises attributes in the certificate without revealing the
plurality of user attributes in the certificate.

[0010] According to various examples, a computer system
for providing to a user an anonymous user signature on a
message in a distributed decentralized network is presented.
The computer system includes: at least one hardware secu-
rity module communicatively coupled to the network and a
certificate authority communicatively coupled to the net-
work. The certificate authority includes at least one elec-
tronic processor configured to perform operations including:
obtaining a credential for the user, the credential comprising
a certificate signed by a root certificate authority on the
network, wherein the certificate comprises a user public key
and a plurality of user attributes; receiving from the user a
request for a signature on the message, wherein the request
comprises the message to be signed and an indication of a
subset of the plurality of user attributes to be revealed to a
recipient; accessing, from the hardware security module, a

US 2022/0020003 Al

user secret key corresponding to the user public key in the
credential; and providing to the user at least the message
signed by the user secret key and a zero-knowledge proof,
wherein the zero-knowledge proof establishes that the mes-
sage is signed by the user secret key corresponding to the
user public key in the credential without revealing the
plurality of user attributes.

[0011] Various optional features of the above examples
include the following. The operations may further comprise,
prior to the receiving the request for the signature: receiving,
by a certificate authority on the network and from the user,
a request for an account; and providing, to the user, a user
name and a password. The operations may further comprise,
prior to the receiving the request for the signature: gener-
ating an asymmetric cryptographic key pair for the user,
wherein the asymmetric cryptographic key pair consists of
the user public key and the user secret key; and installing the
user secret key in the hardware security module. The opera-
tions may further comprise providing to the user an identi-
fication of a memory location of the hardware security
module at which the user secret key is stored. The network
may include a blockchain network. The message may
include a proposed cryptocurrency transaction in the block-
chain network. The operations may further include, prior to
the receiving the request for the signature: accessing, from
the hardware security module, the user secret key; and
generating, using the user secret key, the credential for the
user. The hardware security module may be protected by at
least one of role-based access control or attribute-based
access control. The subset of the plurality of user attributes
may conform to a presentation policy specifying attributes
required to be disclosed for a specified message type. The
zero-knowledge proof may further establish that the subset
of the plurality of user attributes comprises attributes in the
certificate without revealing the plurality of user attributes in
the certificate.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
the present teachings and together with the description,
serve to explain the principles of the disclosure.

[0013] FIG. 1 is a schematic diagram of a distributed
decentralized computer network according to an example;
[0014] FIG. 2 depicts flowcharts of methods for preparing
for a certificate authority to provide to a user an anonymous
user signature on a message in a distributed decentralized
network according to an example;

[0015] FIG. 3 is a flowchart of a method for a certificate
authority to provide to a user an anonymous user signature
on a message in a distributed decentralized network accord-
ing to an example; and

[0016] FIG. 4 is a flowchart of a method for a recipient
utilizing a signature on a message according to an example.
[0017] It should be noted that some details of the figures
have been simplified and are drawn to facilitate understand-
ing of the present teachings, rather than to maintain strict
structural accuracy, detail, and scale.

DETAILED DESCRIPTION

[0018] Reference will now be made in detail to the dis-
closed examples, which are illustrated in the accompanying
drawings. Wherever possible, the same reference numbers

Jan. 20, 2022

will be used throughout the drawings to refer to the same or
like parts. In the following description, reference is made to
the accompanying drawings that form a part thereof, and in
which is shown by way of illustration specific examples.
These examples are described in sufficient detail to enable
those skilled in the art to practice them and it is to be
understood that other examples can be utilized and that
changes can be made without departing from the scope of
the disclosure. The following description is, therefore,
merely exemplary.

[0019] For purposes of comparison, an overview of how
prior art blockchain networks typically handle transaction
requests is described presently. A participant in the block-
chain network, e.g., a human user, using a blockchain client,
e.g., a blockchain wallet or other interface, stores their
private key locally. A certificate, signed by a certificate
authority (CA), and associating the user’s public key with
certain user attributes, e.g., user name, organization, client
location, etc., is available to other participants in the net-
work. The user, via their blockchain client, signs a transac-
tion request (e.g., a request for a transfer of cryptocurrency)
and submits it to the blockchain network. The request
includes the user’s signature on the request. In the block-
chain network, certain nodes (e.g., peers) perform validation
of'the request. The specific nodes (e.g., the number of nodes)
that are supposed to validate the transaction depends on the
endorsement policy configured in the blockchain network.
The validators check if the transaction initiator (the request-
ing user via the client) is authorized to perform the trans-
action, which includes validating the signature on the trans-
action request using the user’s publicly available public key,
which may be obtained from, or confirmed using, the user’s
publicly available certificate. Note that as part of this action,
the validators may decrypt the certificate or otherwise view
the user’s attributes that are present in the certificate. Once
the transaction is validated, the validators simulate the
transaction on the local copy of the blockchain ledger. If all
validations are successful, then the validator signs the
response with its own private key and returns it to the
requesting client. The user’s client then validates the signa-
tures received from the validators. When the required num-
ber of validator signatures are received (the number depends
on the endorsement policy), the request is propagated to the
entire network to update the blockchain distributed ledger.

[0020] Note that, as described above, all blockchain net-
work participants have access to the certificates of all other
users in the blockchain network. The certificates include all
the users’ attributes that were specified at the time of
certificate generation. Anyone can view all the information
available in the certificate. Because blockchain network
users store their private keys locally, if a malicious person
can somehow manage to access the environment of any
participant, such a person can access the private key of that
user. Thus, information gained from the certificate of a user,
e.g., organization name, country, user email address, user
legal name, etc., can lead to the knowledge of existence of
other users in the network and increase the risk. For
example, a business may share a blockchain network with
multiple vendors. In this scenario, though the vendors do not
need to know about each other, by virtue of being part of the
same network, they can gain information about each other
through the certificates. While some blockchain networks
have mechanism to isolate non-participating members from
some transactions, members participating in multiple trans-

US 2022/0020003 Al

action still have to disclose all details of their certificate
attributes. Thus, blockchain networks undesirably leak par-
ticipant information through the participants’ certificates.
[0021] Examples solve the above-described private key
security and information leakage problems. In particular,
some examples provide private key storage and security,
e.g., in a distributed and decentralized computer network
such as a blockchain. Some examples utilize a hardware
security module to store, and in some instances create,
private keys securely. Some examples secure communica-
tions with the hardware security module using Attribute-
Based Access Control (“ABAC”) and/or Role-Based Access
Control (“RBAC”).

[0022] Moreover, some examples secure information
associated with private keys using a zero-knowledge proof.
Zero-knowledge proofs in general are encryption schemes
used to prove that that an entity has possession of certain
information without revealing the information. Some
examples utilize a zero-knowledge proof to establish that a
user has a certificate, signed by a certificate authority, that
includes certain attributes, without revealing the entirety of
attributes in the certificate. In particular, some examples use
zero-knowledge proofs to bind user attributes to their public
keys without leaking user identities or other user attributes
considered private.

[0023] In sum, examples provide techniques to secure
private keys in decentralized distributed systems such as
blockchain networks. Examples keep user identities and
associated attributes anonymous, thus, users do not have to
expose their identities or their entire set of attributes in their
certificate to sign a message such as a transaction request,
and a receiving party may verify the user’s signature on the
message without learning the user’s identity or full set of
attributes.

[0024] These and other features and advantages are shown
and described presently in reference to FIGS. 1-4.

[0025] FIG. 1 is a schematic diagram of a distributed
decentralized computer network 100 according to an
example. Network 100 may be a blockchain network
according to some examples. Network 100 includes three
organizations 102, 104, 106. Each organization 102, 104,
106 is shown as including two peers, 108, 110, 112, 114, 116,
118, respectively, and a certificate authority 120, 122, 124,
respectively. Nodes in the network, including clients 103,
105, 111, peers 108, 110, 112, 114, 116, 118, and certificate
authorities 120, 122, 124, 150 may communicate with each
other using remote procedure call (“RPC”) protocol. In
general, peers 108, 110, 112, 114, 116, 118 receive, verify,
and process transaction requests. Each peer 108, 110, 112,
114, 116, 118 stores a copy of the shared ledger of the
blockchain network (e.g., shared ledger 141 of peer 110) and
its own certificate (e.g., certificate 140 of peer 110), which
may be in the form of a credential, discussed in detail below.
[0026] The interconnected nodes of each organization
102, 104, 106 represent distinct trust domains; that is, each
organization 102, 104, 106 represents a trust domain. Each
certificate authority 102, 122, 124 is linked to a trusted root
certificate authority 150 by a trust link, e.g., by the root
certificate authority 150 signing public key certificates for
the public keys of the certificate authorities 120, 122, 124 or
by the root certificate authority 150 issuing credentials
(discussed in detail below) to certificate authorities 120, 122,
124. Thus, certificate authorities 120, 122, 124 are local,
intermediate certificate authorities, operating under the

Jan. 20, 2022

authority of root certificate authority 150. All users within
organization 102 (respectively, 104, 106) send crypto-
graphic-related requests to their local certificate authority
120 (respectively, 122, 124). Certificate authorities may be
implemented as Membership Service Providers (“MSP”) in
examples built using Hyperledger Fabric.

[0027] Users 101, 107, 109, operating their respective
clients 103, 105, 111, interact with their respective organi-
zation’s peers. In particular, users 101, 107, 109 use their
client software 103, 105, 111, respectively, to submit their
transaction requests to the peers in their network, which
validate and endorse the transaction request.

[0028] Each organization includes a respective Hardware
Security Module (“HSM”) 126, 128, 130 in its network. In
general, an HSM is a physical tamper-resistant and/or tam-
per-evident computing device that stores cryptographic keys
and performs cryptographic functions such as encryption,
decryption, signing, and signature verification. According to
some examples, the private keys of users 101, 107, 109 are
stored in the respective HSM 126, 128, 130 for their
organization. For example, the private key of user 109 may
be stored in HSM 130 at memory location 131, which may
correspond to a slot, label, and/or index. Some examples
utilize the Transport Layer Security (“TLS”) protocol with
PKCS11 API commands to communication with the HSM
126, 128, 130.

[0029] Memory locations 131 and their access within an
HSM may be defined by parameters for a “label”, an
“index”, a “module”, and a “PIN”. The “label” defines the
name of the object or the token that will be set. Thus, the
label may be considered as a name for the slot. In general,
for an HSM, there is no native descriptive identification for
slots, so adding a name makes it more manageable. The
“index” refers to the position of the slot. This is a numeric
representation, starting from one. Different implementations
may have different numbering formats. The “module” refers
to the relevant library of commands. By default, every HSM
includes an implementation of a PKCS11 interface. In case
any other library is needed, it may be invoked using a
module option. As an example, for the SoftHSM simulator,
libraries libsofthsm?2 and coolkey may be used. The “PIN”
refers to a password to access the content of the slot. This is
set at the time of initializing the slot. The PIN is issued to the
user or other party that is to access the slot contents.
[0030] HSM 126, 128, 130 may be implemented locally or
in the cloud. For local implementation, some examples
utilize an HSM plugin for the blockchain architecture, which
may be Hyperledger Fabric, for example. Some plugins
store HSM slot locations in a locally stored Blockchain
Cryptographic Service Provider (“BCCSP”) setting configu-
ration file. Therefore, if a malicious node gains access to that
machine/node, it can gain knowledge of the HSM slot in
which a user’s key is stored. Local HSMs are very costly and
many organizations look for alternative options.

[0031] Therefore, organizations may opt for shared HSMs
on the cloud (e.g., Key Vault of Microsoft Azure Cloud). The
cloud providers may render a service endpoint to the orga-
nizations with a subscription. The organizations configure
the service endpoint in some customized way such that the
nodes on the network can use it. In particular, the service
endpoint may include an interpreter to convert communica-
tions with the HSMs between gRPC (as used by the nodes)
and PKCS11 (as used by the HSM) format. Such an inter-
preter may be referred to herein as a “gateway”. FIG. 1

US 2022/0020003 Al

depicts gateway 180 for HSM 130; HSMs 126, 128 may
have their own respective gateways.

[0032] To tighten the security of the gateway to HSM 130,
some examples utilize Attribute-Based Access Control
(“ABAC”) 182 and/or Role-Based Access Control
(“RBAC”) 184 instead of or in addition to standard authen-
tication. RBAC 184 in gateway 180 restricts access to HSM
130 based on a user’s role within an organization. More
particularly, a person’s computer account within the orga-
nization may be assigned one or more roles, which are used
to determine which network resources, such as HSM 130,
the user may access. If a particular network resource is
accessible by users with a particular assigned role in the
organization, and if a particular user is assigned that role,
then the particular user may access the particular network
resource.

[0033] ABAC 182 restricts network resource access based
on attributes assigned to users within an organization. More
particularly, ABAC 182 grants usage rights to users through
the use of policies that bundle one or more attributes. The
policies can use any type of attributes (user attributes,
resource attributes, object, environment attributes, etc.).
ABAC 182 supports Boolean logic, e.g., ABAC rules may
contain IF/THEN conditional statements about who is mak-
ing the request, the resource, and the action. Unlike RBAC
184, which employs pre-defined roles that carry a specific
set of privileges associated with them and to which user
accounts are assigned, ABAC 182 can use policies that
express a Boolean rule set that can evaluate many different
user attributes for access purposes.

[0034] An example system 190 may include at least one
certificate authority (120, 122, 124) and at least one HSM
(126, 128, 130). System 190 may be used to mask or omit
the blockchain participants’ attributes from their transaction
requests, such that no other participant will know who
initiates the transactions and what attributes they might
have, e.g., the organization name, the email address, which
department of which organization the user belongs to, etc.
This may be accomplished using a zero-knowledge proof.
Using a zero-knowledge proof as disclosed, the validators
will not know who is initiating the transaction and would
only be able to learn the specific attributes that the transac-
tion initiator decides to disclose.

[0035] An overview of how system 190 may be used to
implement an example that achieves such attribute hiding is
described presently. The example may be implemented, e.g.,
using Hyperledger Fabric and its component Identity Mixer
(“Idemix”). User 101, via their client 103, sends a request to
the organization’s internal certificate authority 120 for key
pair generation. Once the key pair are generated, user 101
sends a request for a credential 162, which may be or include
a certificate 164 such as an Enrollment Certificate (“ECert”).
Certificate authority 120 accesses the user’s private key in
the HSM 126 and then generates and issues a credential, e.g.,
in the form of an Idemix ECert. The credential 162 contains
the public key 166 of user 101 and the attributes 168 that
user 101 has. User 101 may store credential 162 locally, e.g.,
in client 103. Then, when user 101 wants to sign a transac-
tion request, they send a request to certificate authority 120
to provide a signature 174 on a message 172 (e.g., the
contents of the transaction) using the private key of user 101
and to provide a corresponding zero-knowledge proof 176.
The signature and zero-knowledge proof may be in the form
of a transaction certificate, such as an Idemix Transaction

Jan. 20, 2022

Certificate (“TCert”). According to some examples that
utilize Idemix, the transaction certificate includes a zero-
knowledge proof, which: (1) signs the transaction content,
(2) proves a possession of a valid ECert issued by a
certificate authority without revealing the full set of user
attributes in the ECert, and (3) discloses only the attributes
that are required by the presentation policy for the network.
The ultimate issuer of the ECert and the TCert in this
hierarchy may be the root certificate authority 150.

[0036] In response to the request of user 101, the local
certificate authority 120 generates a TCert request that
contains only the attributes that are disclosed by user 101
consistent with the network’s presentation policy. The Ide-
mix engine running in local certificate authority 120 gener-
ates a TCert, signed by root certificate authority 150. User
101 then issues a transaction request and signs the transac-
tion request using the TCert, that is, by including the TCert
in the transaction request.

[0037] The transaction request with its TCert then reaches
the verifier(s) in the network. The verifiers verify the trans-
action using the public key of root certificate authority 150.
This may be performed by the Idemix Membership Service
Provider (“MSP”) of the verifier. The verifiers are all the
nodes (e.g., peers 108, 110) that are specified as part of the
endorsement policy for the network, and the signature gets
verified using the Idemix MSP of all verifiers. In this
process, the verifiers determine that the transaction and its
initiator are valid and using the public key of root certificate
authority 150. However, since the TCert is created with
limited information, it can maintain anonymity.

[0038] Note that Idemix is capable of generating multiple
TCerts with different presentation policies. Therefore, in an
isolated environment, one participant can use a different
TCert for every transaction (or every vendor). The zero-
knowledge proof of Idemix provides unlinkability and ano-
nymity in the network. Linking of the user 101 and TCert
only can be done through the root certificate authority 150.

[0039] The above summary and its variations are elabo-
rated upon in the following descriptions regarding FIGS.
2-4.

[0040] FIG. 2 depicts flowcharts of methods 200, namely,
methods 201, 205, and 211, for preparing for a certificate
authority to provide to a user an anonymous user signature
on a message in a distributed decentralized network accord-
ing to an example. That is, methods 201, 205, 211 may be
used to provision a system to later provide an anonymous
signature as shown and described in reference to FIG. 3.
Methods 201, 205, and 211 may be implemented using
system 190 of FIG. 1, for example.

[0041] Method 201 may be used by a user to establish an
account with the distributed decentralized network (e.g., a
blockchain). At 202, a certificate authority (e.g., local cer-
tificate authority 120, 122, 124) receives a request from a
user (e.g., user 101) via their client (e.g., client 103) for an
account. According to some examples, the request may be
generated through a command line interface to a
Hyperledger Fabric certificate authority. The user provides
at least some of their attributes and is registered with the
certificate authority, e.g., an MSP. The command may be of
the following form, by way of non-limiting example:

[0042] fabric-ca-client register --id.name $SUSERNAME

--id.type user --id.affiliation orgl.department] --id.attrs ‘hf.
Revoker=true,foo=bar’

US 2022/0020003 Al

[0043] Note that additional attributes for the user can be
added to an ECert (discussed below) by adding an “:ecert”
field, as follows.

[0044] fabric-ca-client register -u
<attrName>=<attrValue>[:ecert|
[0045] The registration command returns a password after
registering the user.

[0046] At 204, the user provides a username and receives
a corresponding password from the certificate authority.
According to some examples, the certificate authority pro-
vides both the username and password.

[0047] The certificate authority may further enroll the user
as part of method 201. Such enrollment may be accom-
plished using the following command, by way of non-
limiting example.

[0048] fabric-ca-client enroll -u http:/SUSERNAME:
PASSWORD@S$SHOST: $PORT -M $FABRIC_CA_CLI-
ENT_HOME/${USERNAME }msp

[0049] Note that the enroll command includes the user-
name and password for the user.

[0050] Method 205 may be used by a user to request that
an asymmetric key pair be generated and managed for the
user. At 206, a request to generate an asymmetric key pair is
received, e.g., by an MSP, a gateway, or another interface to
the HSM. There are two main examples of method 205: (1)
create the key pair and store the private key internally to the
HSM, and (2) create the key pair and load the private key
into the HSM programmatically.

[0051] To create the key pair externally and import the
secret key to the HSM, various techniques may be used. For
example, openssl may be used to generate 208 the key pair,
and softhsm2-util may be used to install 210 the private key
in a slot of SoftHSM that simulates an HSM. An import
command may be of the form of, by way of non-limiting
example:

[0052] softhsm2-util --import $SECRET_KEY --serial
$SLOT_SERIAL --id $SLOT_ID --label $SLOT_LABEL
[0053] To create the key pair and load the private key
programmatically, customized coding may be used. For
example, Java code may be used to create a SoftHSM client,
generate 208 a key pair in memory, and install 210 the
private key in SoftHSM. The slot is initiated before the key
can be stored. An example initiation command is, by way of
non-limiting example, as follows:

[0054] softhsm2-util --init-token --slot O --label $LABEL
[0055] This command initializes an available slot for key
storage. At the time of import, the slot ID needs to be
supplied. An example import command is, by way of
non-limiting example, as follows:

[0056] softhsm2-util --import $SECRET_KEY --serial
$SLOT_SERIAL --id $SLOT_ID --label $SLOT_LABEL
[0057] According to either technique (internal key cre-
ation, programmatic key creation), the HSM itself may not
associate a slot with a user. However, examples may use
custom code external to the HSM to establish the mapping
of users and slots, e.g., using a gateway as shown and
described above in reference to FIG. 1.

[0058] Method 211 may be used by a user to obtain a
credential, e.g., an ECert. At 212, the user’s (e.g., user 101)
local certificate authority (e.g., certificate authority 120)
receives a request for a credential for user. The credential
request may include a set of attributes of user 101, or such
attributes may already be known to the certificate authority
via the user’s account establishment using, e.g., method 201.

-id.attrs

Jan. 20, 2022

The credential request may also include the user’s 101
public key. The credential request may also include a
zero-knowledge proof that user 101 has possession of the
secret key corresponding to the provided public key.
[0059] At 214, certificate authority 120 verifies the zero-
knowledge proof that user 101 has possession of the secret
key corresponding to the public key included in the request.
Note that certificate authority 120 does not learn of the
user’s secret key through the verification. If the zero-
knowledge proof is validated, then control passes to 216;
otherwise, the process halts with an error.

[0060] At 216, the certificate authority accesses the secret
key of user 101. The certificate authority may obtain the
secret key from an HSM according to some examples.
[0061] At 218, the certificate authority generates a cre-
dential for user 101. The credential may include the user’s
public key and a list of the user’s attributes, and may be
signed by a certificate authority, e.g., a root certificate
authority such as root certificate authority 150 of FIG. 1. The
credential may be in the form of an Idemix ECert according
to some examples.

[0062] At 220, the certificate authority provides to user
101 the credential. The certificate authority may provide the
credential to user 101 via communication channels of net-
work 100. User 101 may store their credential locally for
future use.

[0063] FIG. 3 is a flowchart of a method 300 for a
certificate authority to provide to a user an anonymous user
signature on a message in a distributed decentralized net-
work according to an example. Method 300 may be imple-
mented using system 190 of FIG. 1, for example.

[0064] At 302, a certificate authority (e.g., certificate
authority 120 for purposes of illustrating method 300)
obtains a user credential (e.g., a credential of user 101).
Certificate authority 120 may obtain the credential from a
stored collection of such credentials, or the credential may
be supplied in a request from the user.

[0065] At 304, certificate authority 120 receives a request
for a signature from user 101 via client 103. The request may
include the data to be signed (e.g., a message such as a
blockchain transaction request), the user’s credential, e.g., as
provided per method 211 (according to some examples; in
other examples, certificate authority obtains the user’s cre-
dential elsewhere, e.g., from local storage), a list of user
attributes that user 101 is willing to reveal (a subset of the
attributes in the user’s credential), and the public key of root
certificate authority 150 (according to some examples; in
other examples, certificate authority obtains the root certifi-
cate authority’s public key elsewhere, e.g., from local stor-
age).

[0066] At 306, certificate authority 120 accesses the secret
key of user 101. Certificate authority 120 may obtain the
secret key from HSM 126 according to some examples.
[0067] At 308, certificate authority 120 generates at least
one zero-knowledge proof. In particular, certificate authority
120 uses the secret key, the list of attributes that user 101 is
willing to reveal, the secret key of root certificate authority
150, and the credential of user 101 obtained per method 211
to generate a data structure that includes the data to be
signed, signed by the secret key of user 101, and at least one
zero-knowledge proof. At least one zero-knowledge proof in
the data structure may establish that the message is signed by
the user secret key corresponding to the user public key in
the credential without revealing the full plurality of attri-

US 2022/0020003 Al

butes that are present in the credential of user 101. At least
one zero-knowledge proof in the data structure may estab-
lish that the list of attributes that user 101 is willing to reveal
is included in the full list of attributes in the credential of
user 101 without revealing full plurality of user attributes
that are present in the credential of user 101. At least one
zero-knowledge proof in the data structure may establish a
trust chain exists from the signature on the data for which a
signature was requested to the public key of the root
certificate authority 150. The signature and/or one or more
zero-knowledge proofs generated per 208 may include a
signature as disclosed by any of: C. F. Schnorr, Efficient
Identification and Signatures for Smart Cards, Advances in
Cryptology—CRYPTO °89, LNCS 435, pp. 239-252, 1990;
Camenisch J., Lysyanskaya A., Signature Schemes and
Anonymous Credentials from Bilinear Maps, Franklin M.
(eds) Advances in Cryptology—CRYPTO 2004, Springer
2004; and Au M. H., Susilo W., Mu Y., Constant-Size
Dynamic k-TAA, De Prisco R., Yung M. (eds) Security and
Cryptography for Networks, Springer 2006. According to
some examples, the signature and/or one or more zero-
knowledge proofs may include an Idem ix signature. When
the data to be signed includes a request for a blockchain
transaction in a Hyperledger Fabric implementation, the data
structure generated per 208 may be referred to as a trans-
action certificate, or TCert.

[0068] At 310, certificate authority 120 provides to user
101 the signed message and at least one zero-knowledge
proof, which may be included in a data structure that also
includes the signed data for which a signature was requested.
According to some examples, the full data structure is
provided to user 101.

[0069] FIG. 4 is a flowchart of a method 400 for a recipient
utilizing a signature on a message according to an example.
Method 400 may be implemented using system 190 of FIG.
1, for example. By way of non-limiting example, method
400 is disclosed in the context of user 101 requesting that
their cryptocurrency transaction 170 be endorsed by a
required number of peers.

[0070] At 402, a peer, such as peer 108, receives a signed
transaction request from client 103. The transaction request
includes a description of the transaction (e.g., transfer X
amount of cryptocurrency units to blockchain network par-
ticipant Y) and a transaction certificate as shown and dis-
closed herein in reference to method 300. In particular, the
transaction certificate may include the signed transaction
description and at least one zero-knowledge proof as shown
and described above in reference method 300.

[0071] At 404, peer 108 verifies the transaction. That may
include verifying some or all verifiable information in the
transaction certificate. For example, 404 may include peer
108 confirming that the transaction request is signed by the
user secret key corresponding to the user public key in the
credential for user 101 without obtaining the plurality of
user attributes. Alternately, or in addition, 404 may include
peer 108 confirming that the list of attributes that user 101
is willing to reveal is included in the full list of attributes in
the credential of user 101 without revealing full plurality of
user attributes that are present in the credential of user 101.
Alternately, or in addition, 404 may include peer 108 con-
firming that a trust chain exists from the signature on the
data for which a signature was requested to the public key
of the root certificate authority 150. If all verifications are

Jan. 20, 2022

completed without error, then control passes to 406; other-
wise, method 400 may halt with an error.

[0072] At 406, peer 108 signs a response to the transaction
request, indicating that peer 108 endorses the proposed
transaction. The signature may be a signature as shown and
disclosed herein in reference to FIG. 3.

[0073] At 408, peer 108 sends the signed response to client
103.
[0074] Subsequently, once client 103 has received a suf-

ficient number of peer endorsements (per an endorsement
policy) such as that sent by peer 108 at 408, client 103
broadcasts the fully endorsed transaction to the blockchain
network or to dedicated nodes (e.g., ordering nodes) accord-
ing to various examples. The nodes in the blockchain
network receive the endorsed transaction and verify all
signatures from the endorsing peers. Upon successtul vali-
dation, the nodes update their local copy of the blockchain
ledger.

[0075] The subject disclosure is not to be limited in terms
of the particular examples described in this application,
which are intended as illustrations of various aspects. Many
modifications and variations can be made without departing
from its spirit and scope, as will be apparent to those skilled
in the art. Functionally equivalent methods and apparatuses
within the scope of the disclosure, in addition to those
enumerated herein, will be apparent to those skilled in the art
from the foregoing descriptions. Such modifications and
variations are intended to fall within the scope of the
appended claims. The subject disclosure is to be limited only
by the terms of the appended claims, along with the full
scope of equivalents to which such claims are entitled. It is
also to be understood that the terminology used herein is for
the purpose of describing particular examples only, and is
not intended to be limiting.

[0076] With respect to the use of substantially any plural
and/or singular terms herein, those having skill in the art can
translate from the plural to the singular and/or from the
singular to the plural as is appropriate to the context and/or
application. The various singular/plural permutations can be
expressly set forth herein for sake of clarity.

[0077] It will be understood by those within the art that, in
general, terms used herein, and especially in the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes” should be interpreted as “includes but is not
limited to,” etc.). It will be further understood by those
within the art that if a specific number of an introduced claim
recitation is intended, such an intent will be explicitly recited
in the claim, and in the absence of such recitation no such
intent is present. For example, as an aid to understanding,
the following appended claims can contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim recitations. However, the use of such
phrases should not be construed to imply that the introduc-
tion of a claim recitation by the indefinite articles “a” or “an”
limits any particular claim containing such introduced claim
recitation to examples containing only one such recitation,
even when the same claim includes the introductory phrases
“one or more” or “at least one” and indefinite articles such
as “a” or “an” (e.g., “a” and/or “an” should be interpreted to
mean “at least one” or “one or more”); the same holds true
for the use of definite articles used to introduce claim

US 2022/0020003 Al

recitations. In addition, even if a specific number of an
introduced claim recitation is explicitly recited, those skilled
in the art will recognize that such recitation should be
interpreted to mean at least the recited number (e.g., the bare
recitation of “two recitations,” without other modifiers,
means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analo-
gous to “at least one of A, B, and C, etc.” is used, in general
such a construction is intended in the sense one having skill
in the art would understand the convention (e.g., “a system
having at least one of A, B, and C” would include but not be
limited to systems that have A alone, B alone, C alone, A and
B together, A and C together, B and C together, and/or A, B,
and C together, etc.). In those instances where a convention
analogous to “at least one of A, B, or C, etc.” is used, in
general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include
but not be limited to systems that have A alone, B alone, C
alone, A and B together, A and C together, B and C together,
and/or A, B, and C together, etc.). It will be further under-
stood by those within the art that virtually any disjunctive
word and/or phrase presenting two or more alternative
terms, whether in the description, claims, or drawings,
should be understood to contemplate the possibilities of
including one of the terms, either of the terms, or both terms.
For example, the phrase “A or B” will be understood to
include the possibilities of “A” or “B” or “A and B.” In
addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the
art will recognize that the disclosure is also thereby
described in terms of any individual member or subgroup of
members of the Markush group.

[0078] While various aspects and examples have been
disclosed herein, other aspects and examples will be appar-
ent to those skilled in the art. The various aspects and
examples disclosed herein are for purposes of illustration
and are not intended to be limiting, with the true scope and
spirit being indicated by the following claims.

What is claimed is:

1. A method of a certificate authority providing to a user
an anonymous user signature on a message in a distributed
decentralized network, the method comprising:

obtaining, by the certificate authority, a credential for the
user, the credential comprising a certificate signed by a
root certificate authority on the network, wherein the
certificate comprises a user public key and a plurality of
user attributes;

receiving, by a certificate authority on the network and
from the user, a request for a signature on the message,
wherein the request comprises the message to be signed
and an indication of a subset of the plurality of user
attributes to be revealed to a recipient;

accessing, from a hardware security module on the net-
work, a user secret key corresponding to the user public
key in the credential; and

providing, by the certificate authority and to the user, at
least the message signed by the user secret key and a
zero-knowledge proof, wherein the zero-knowledge
proof establishes that the message is signed by the user
secret key corresponding to the user public key in the
credential without revealing the plurality of user attri-
butes,

Jan. 20, 2022

whereby the user sends the subset of user attributes, the
zero-knowledge proof, and the message signed by the
user secret key corresponding to the user pubic key in
the credential to the recipient, who confirms at least that
the message is signed by the user secret key corre-
sponding to the user public key in the credential
without obtaining the plurality of user attributes.

2. The method of claim 1, further comprising, prior to the
receiving the request for the signature:

receiving, by a certificate authority on the network and

from the user, a request for an account; and
providing, to the user, a user name and a password.

3. The method of claim 1, further comprising, prior to the
receiving the request for the signature:

generating an asymmetric cryptographic key pair for the

user, wherein the asymmetric cryptographic key pair
consists of the user public key and the user secret key;
and

installing the user secret key in the hardware security

module.

4. The method of claim 3, further comprising providing to
the user an identification of a memory location of the
hardware security module at which the user secret key is
stored.

5. The method of claim 1, wherein the network comprises
a blockchain network.

6. The method of claim 5, wherein the message comprises
a proposed cryptocurrency transaction in the blockchain
network.

7. The method of claim 1, further comprising, prior to the
receiving the request for the signature:

accessing, from the hardware security module, the user

secret key; and

generating, using the user secret key, the credential for the

user.

8. The method of claim 1, wherein the hardware security
module is protected by at least one of role-based access
control or attribute-based access control.

9. The method of claim 1, wherein the subset of the
plurality of user attributes conforms to a presentation policy
specifying attributes required to be disclosed for a specified
message type.

10. The method of claim 1, wherein the zero-knowledge
proof further establishes that the subset of the plurality of
user attributes comprises attributes in the certificate without
revealing the plurality of user attributes in the certificate.

11. A computer system for providing to a user an anony-
mous user signature on a message in a distributed decen-
tralized network, the computer system comprising:

at least one hardware security module communicatively

coupled to the network; and

a certificate authority communicatively coupled to the

network, the certificate authority comprising at least

one electronic processor configured to perform opera-

tions comprising:

obtaining a credential for the user, the credential com-
prising a certificate signed by a root certificate
authority on the network, wherein the certificate
comprises a user public key and a plurality of user
attributes;

receiving from the user a request for a signature on the
message, wherein the request comprises the message

US 2022/0020003 Al

to be signed and an indication of a subset of the
plurality of user attributes to be revealed to a recipi-
ent;

accessing, from the hardware security module, a user
secret key corresponding to the user public key in the
credential; and

providing to the user at least the message signed by the
user secret key and a zero-knowledge proof, wherein
the zero-knowledge proof establishes that the mes-
sage is signed by the user secret key corresponding
to the user public key in the credential without
revealing the plurality of user attributes.

12. The computer system of claim 11, wherein the opera-
tions further comprise, prior to the receiving the request for
the signature:

receiving, by a certificate authority on the network and

from the user, a request for an account; and
providing, to the user, a user name and a password.

13. The computer system of claim 11, wherein the opera-
tions further comprise, prior to the receiving the request for
the signature:

generating an asymmetric cryptographic key pair for the

user, wherein the asymmetric cryptographic key pair
consists of the user public key and the user secret key;
and

installing the user secret key in the hardware security

module.

14. The computer system of claim 13, wherein the opera-
tions further comprise providing to the user an identification

Jan. 20, 2022

of a memory location of the hardware security module at
which the user secret key is stored.

15. The computer system of claim 11, wherein the net-
work comprises a blockchain network.

16. The computer system of claim 15, wherein the mes-
sage comprises a proposed cryptocurrency transaction in the
blockchain network.

17. The computer system of claim 11, wherein the opera-
tions further comprise, prior to the receiving the request for
the signature:

accessing, from the hardware security module, the user

secret key; and

generating, using the user secret key, the credential for the
user.

18. The computer system of claim 11, wherein the hard-
ware security module is protected by at least one of role-
based access control or attribute-based access control.

19. The computer system of claim 11, wherein the subset
of the plurality of user attributes conforms to a presentation
policy specifying attributes required to be disclosed for a
specified message type.

20. The computer system of claim 11, wherein the zero-
knowledge proof further establishes that the subset of the
plurality of user attributes comprises attributes in the cer-
tificate without revealing the plurality of user attributes in
the certificate.

	Abstract
	Biblio
	Claims
	Descriptions
	Drawings

