Positive active material for rechargeable lithium battery, method for preparing same and rechargeable lithium battery including same

A positive active material including a compound represented by Li$_{1+x}$M$_{1-k}$Me$_k$O$_2$. A surface part of a particle of the positive active material has a mole ratio [Me/M] (A) of element represented by Me to element represented by M in Li$_{1+x}$M$_{1-k}$Me$_k$O$_2$ of $0.05 \leq A \leq 0.60$; the entire particle has a mole ratio [Me/M] (B) of element represented by Me to element represented by M in Li$_{1+x}$M$_{1-k}$Me$_k$O$_2$ of $0.003 \leq B \leq 0.012$; and element represented by Me has a concentration difference of between two positions of less than or equal to about 0.02 wt% in an inner part of the particle.

In Li$_{1+x}$M$_{1-k}$Me$_k$O$_2$, $-0.2 \leq x \leq 0.2$, $0 < k \leq 0.05$

M is one selected from Ni, Mn, Co, and a combination thereof, Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and M is not the same element as Me or does not include the same element as Me.
Description

BACKGROUND

1. Field

[0001] A positive active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same are disclosed.

2. Description of the Related Art

[0002] Relating to the trends of down-sizing and making light weight portable electronic devices, batteries for powering these portable electronic devices should be made to have high performance and high capacity.

[0003] Batteries generate electric power using an electrochemical reaction material (referred to hereinafter simply as an "active material") for a positive electrode and a negative electrode. Rechargeable lithium batteries generate electrical energy from changes of chemical potential during the intercalation/deintercalation of lithium ions at the positive and negative electrodes.

[0004] Rechargeable lithium batteries use materials that reversibly intercalate or deintercalate lithium ions during charge and discharge reactions for both positive and negative active materials, and include an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.

[0005] In a positive active material for a rechargeable lithium battery, lithium composite metal oxides such as LiCoO$_2$, LiMn$_2$O$_4$, LiNiO$_2$, LiNi$_{1-x}$Co$_x$O$_2$ (0<x<1), LiMnO$_2$, LiNi$_{1-x-y}$Co$_x$Mn$_y$O$_2$ (0<x<1, 0<y<1, provided that x+y ≤1), and the like have been researched.

SUMMARY

[0006] An aspect of the invention is directed toward a positive active material for a rechargeable lithium battery that is capable of improving capacity and cycle-life characteristics of the rechargeable lithium battery.

[0007] An aspect of the invention is directed toward a method of preparing the positive active material.

[0008] An aspect of the invention is directed toward a rechargeable lithium battery including the positive active material.

[0009] According to one embodiment, a positive active material including a compound represented by the following Chemical Formula 1 is provided.

[0010] In a surface part of a particle of the positive active material, a mole ratio [Me/M] (A) of an element represented by Me to an element represented by M in the following Chemical Formula 1 is 0.05 ≤A ≤0.60, and in the entire particle, a mole ratio [Me/M] (B) of an element represented by Me to an element represented by M in the following Chemical Formula 1 is 0.003 ≤B ≤0.012.

[0011] In an inner part of the particle, the or each element represented by Me has a concentration difference between two positions of less than or equal to about 0.04 wt% (e.g. between any two positions).

[Chemical Formula 1] Li$_{1+x}$M$_{1-k}$Me$_k$O$_2$

[0012] -0.2 ≤x ≤0.2, 0 ≤k ≤0.05

[0013] M is one selected from Ni, Mn, Co, and a combination thereof,

[0014] Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and M is not the same element as Me or does not include the same element as Me.

[0015] In an embodiment of the invention A/B is 10 ≤A/B ≤100.

[0016] The surface part and the inner part are partitioned by an interface positioned at a constant depth from the surface of the particle towards the center of the particle. The surface part is designated as from the surface of the particle to an upper face of the interface, and the inner part is designated as the lower face (e.g. the inside) of the interface to the center of the particle. In embodiments of the invention, the interface is disposed at the depth of about 3nm to about 10nm from the surface of the particle towards the center of the particle.

[0017] The element represented by Me has a decreasing concentration gradient going from the surface of the particle to the center of the particle.

[0018] In embodiments of the invention, in the inner part of the positive active material particle, the element represented by Me in Chemical Formula 1 has a concentration of about 0.01 wt% to about 0.50 wt%.

[0019] In one embodiment, in the above Chemical Formula 1, M is Co.

[0020] In embodiments of the invention, the positive active material has an average particle diameter of about 5 μm to about 20 μm.
According to another embodiment, there is provided a rechargeable lithium battery that includes a positive electrode including the positive active material; a negative electrode including a negative active material; and a non-aqueous electrolyte.

In embodiments of the invention, the negative active material is a material that reversibly intercalates and deintercalates lithium ions, a lithium metal, a lithium metal alloy, a material being capable of doping and dedoping lithium, or a transition metal oxide.

In embodiments of the invention, the non-aqueous electrolyte includes a non-aqueous organic solvent selected from a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and aprotic solvent, and a combination thereof.

According to yet another embodiment, a method of preparing a positive active material for a rechargeable lithium battery including the compound represented by the following Chemical formula 1 is provided that includes mixing a Li raw material, a raw material of an element represented by M (wherein M is one selected from Ni, Mn, Co, and a combination thereof), and a raw material of an element represented by Me 1 (wherein Me 1 is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof) and firing the same to provide a primary particle of a compound including Li, M, and Me 1; and coating the primary particle with a raw material of an element represented by Me 2 (wherein Me 2 is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof) and firing the same to provide a secondary particle of compound including Li, M, Me 1 and Me 2.

[Chemical Formula 1] \(\text{Li}_{1+x}\text{M}_{1-k}\text{Me}_{k}\text{O}_2 \)

\(-0.2 \leq x \leq 0.2, \ 0 < k \leq 0.05\)

M is one selected from Ni, Mn, Co, and a combination thereof,

Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and M is not the same element as Me or does not include the same element as Me.

In view of the above and according to one embodiment, the rechargeable lithium battery has improved capacity and cycle-life characteristics.

In an aspect of the invention, there is a positive active material for a rechargeable lithium battery as described in Claim 1. Embodiments of this aspect are described in Claims 3 to 8. In a further aspect of the invention, there is a rechargeable lithium battery as described in Claim 2. Embodiments of this aspect are described in Claims 3 to 10. In a yet further aspect of the invention, there is a method of preparing a positive active material for a rechargeable lithium battery as described in Claim 11. Embodiments of this aspect are set out in Claims 12 and 13.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view showing the structure of a rechargeable lithium battery according to one embodiment of the present invention.

FIG. 2A is a micrograph of a positive active material particle obtained from Example 2.

FIG. 2B is a graph showing a concentration of Ti and Mg depending upon a depth of the positive active material particle obtained from Example 2.

FIG. 3 is a graph showing a concentration of Ti and Mg depending upon a depth of the positive active material particle obtained from Comparative Example 4.

FIG. 4 is a graph showing capacity according to the cycle of rechargeable lithium cells obtained from Examples 1 to 3 and Comparative Examples 1 to 4 to determine cycle-life characteristics.

FIG. 5 is a graph showing the average voltage according to the cycle of rechargeable lithium cells obtained from Examples 1 to 3 and Comparative Examples 2 to 4 to determine cycle-life characteristics.

DETAILED DESCRIPTION

Example embodiments of the present invention will hereinafter be described in detail. However, these embodiments are only examples, and the present invention is not limited thereto.

In each embodiment of the current invention, unless otherwise specified, the terms "comprising" or "comprises" etc., may be replaced with the terms "consists of" or "consists essentially of" etc.

According to one embodiment, a positive active material including a compound represented by the following Chemical formula 1 for a rechargeable lithium battery is provided.

[Chemical Formula 1] \(\text{Li}_{1+x}\text{M}_{1-k}\text{Me}_{k}\text{O}_2 \)

\(-0.2 \leq x \leq 0.2, \ 0 < k \leq 0.05\)
[0040] M is one selected from Ni, Mn, Co, and a combination thereof,
[0041] Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and M is not the same element as Me or does not include the same element as Me.
[0042] The positive active material has a higher concentration of the element represented by Me in the surface part than in the inner part. For example, when the mole ratio [Me/M] of the element represented by Me to the element represented by M in Chemical Formula 1 refers to A in the surface part of a particle of the positive active material, A is 0.05≤A≤0.60; and when the mole ratio [Me/M] of the element represented by Me to the element represented by M in Chemical Formula 1 refers to B in the entire particle of the positive active material, B is 0.003≤B≤0.012.
[0043] Each element represented by Me is distributed in the inner part of the particle at a relatively uniform concentration. For example, a certain one element represented by Me in Chemical Formula 1 has a concentration difference of between set or predetermined two positions of less than or equal to about 0.04 wt%.
[0044] The inner part and the surface part are partitioned by the interface positioned at constant depth from the surface of the particle towards the center of the particle, and the surface part is defined as from the surface of the particle to the interface, and the inner part is defined as the inside from the interface (e.g., from the inner surface of the interface to the center). The interface is positioned at a depth of about 3nm to about 10nm from the surface of the particle towards the center thereof. For example, the interface has a surface present in the depth of about 5nm from the surface of the particle towards the center.
[0045] In embodiments of the invention, the concentration of the surface part of the particle is measured for each element by X-ray Photoelectron Spectroscopy (XPS), so the value of A can be calculated therefrom.
[0046] In further embodiments of the invention, in order to measure the concentration based on the entirety of one particle, it is measured by Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES), and the value of B can be calculated therefrom.
[0047] In yet further embodiments of the invention, the positive active material has an A/B ratio of 10≤A/B≤100. For example, A/B is 25≤A/B≤70, specifically, 30≤A/B≤50. In one embodiment, when having a concentration gradient that provides A/B within the ranges disclosed above, a rechargeable lithium battery using the disclosed composition has remarkably improved cycle-life characteristics.
[0048] In one embodiment, the positive active material includes the element represented by Me in a high concentration in the surface part of the particle and also has a concentration gradient with a decreasing concentration from the surface of the particle going towards the center part of the particle. In this case, the inner part maintains a set or predetermined level of concentration. For example, in the inner part of the positive active material particle, the element represented by Me in Chemical Formula 1 has a concentration of about 0.01 wt% to about 0.50 wt%, specifically, about 0.05 wt% to about 0.30 wt%.
[0049] According to another embodiment, the positive active material is a lithium cobalt-based composite oxide in which the element represented by M is Co.
[0050] In embodiments of the current invention, the positive active material has an average particle diameter of about 5μm to about 20μm.
[0051] Hereinafter, a method of preparing the positive active material is described.
[0052] According to another embodiment of the present invention, a method of preparing a positive active material for a rechargeable lithium battery is provided that includes mixing a raw material of Li, a raw material of element represented by M (wherein M is one selected from Ni, Mn, Co, and a combination thereof), and a raw material of element represented by Me1 (wherein Me1 is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof) and heat treating (firing) the same to provide a primary particle of compound including Li, M, and Me1; and coating a raw material of element represented by Me2 (wherein Me2 is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof) on the primary particle and heat treating (firing) the same to provide a secondary particle of compound including Li, M, Me1, and Me2.
[0053] The Li raw material includes lithium phosphate (Li3PO4), lithium nitrate (LiNO3), lithium acetate (LiCH3COOH), lithium carbonate (Li2CO3), lithium hydroxide (LiOH), lithium dihydrogen phosphate (LiH2PO4), or a combination thereof, but is not limited thereto.
[0054] In embodiments of the invention, the raw material of the element represented by M includes oxide, sulfate, nitrate, acetate, hydroxide, chloride, oxalate, fluoride, carbonate, or a combination of salts thereof of the element represented by M, but is not limited thereto.
[0055] In embodiments of the invention, the raw materials represented by Me1 and Me2 includes oxide, sulfate, nitrate, acetate, hydroxide, chloride, oxalate, fluoride, carbonate, or a combination of salts thereof of the elements represented by Me1 and Me2, but is not limited thereto.
[0056] A Li raw material, a raw material of element represented by M, and a raw material of an element represented by Me1 are mixed and fired to provide a primary particle of compound including Li, M, and Me1; and then mixed with a raw material of an element represented by Me1 (wherein Me2 is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof) to increase the concentration thereof (i.e. the concentration of Me) in a surface part of the positive
active material particle and fired to provide a secondary particle of compound including Li, M and Me1 and Me2 in which the element represented by Me2 is present in a high concentration in the surface part of the particle. In embodiments of the invention Me1 and Me2 are the same. However, in other embodiments of the invention Me1 and Me2 are different.

During the providing of the primary particle, the firing is performed at about 950°C to about 1100°C for about 10 hours to about 30 hours; and during the providing of the secondary particle, the firing is performed at about 600°C to about 1000°C for about 10 hours to about 30 hours.

According to another embodiment, provided is a rechargeable lithium battery that includes a positive electrode including the positive active material; a negative electrode including a negative active material; and a non-aqueous electrolyte.

Rechargeable lithium batteries are classified as lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the presence of a separator and the kind of electrolyte used in the battery. The rechargeable lithium batteries have a variety of shapes and sizes, and include cylindrical, prismatic, coin-type, or pouch-type batteries, and can be thin film batteries or be rather bulky in size. Structures and fabricating methods for lithium ion batteries pertaining to this disclosure are well known in the art.

Figure 1 is an exploded perspective view of a rechargeable lithium battery according to one embodiment. Referring to FIG. 1, the rechargeable lithium battery 100 according to one embodiment includes a battery cell including a positive electrode 114, a negative electrode 112 facing the positive electrode 114, a separator 113 interposed between the positive electrode 114 and the negative electrode 112, and an electrolyte impregnating the positive electrode 114, negative electrode 112, and separator 113, a battery case 120 housing the battery cell, and a sealing member 140 sealing the battery case 120. The rechargeable lithium battery 100 is fabricated by sequentially stacking a negative electrode 112, a separator 113 and a positive electrode 114, spiral-winding them and housing the wound product in the battery case 120.

The negative electrode includes a current collector and a negative active material layer formed over the current collector. The negative active material layer includes a negative active material.

The negative active material layer includes a material that reversibly intercalates/deintercalates lithium ions, a lithium metal, a lithium metal alloy, a material being capable of doping and dedoping lithium, or a transition metal oxide.

The material that reversibly intercalates/deintercalates lithium ions includes a carbon material. In embodiments of the invention, the carbon material is any generally-used carbon-based negative active material in a lithium ion rechargeable battery. Examples of the carbon material include crystalline carbon, amorphous carbon, and a mixture thereof.

The crystalline carbon can be non-shaped or sheet, flake, spherical, or fiber shaped natural graphite or artificial graphite. The amorphous carbon can be a soft carbon, a hard carbon, mesophase pitch carbide, fired coke, or the like.

The lithium metal alloy includes lithium and a metal selected from Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, or Sn.

In embodiments of the invention, the material being capable of doping and dedoping lithium includes Si, SiO2 (0 < x < 2), a Si-C composite, a Si-Q alloy (wherein Q is an element selected from an alkali metal, an alkaline-earth metal, Group 13 to 16 elements, a transition element, a rare earth element, or a combination thereof, and is not Sn), Sn, SnO2, a Sn-C composite, a Sn-R alloy (wherein R is selected from an alkali metal, an alkaline-earth metal, Group 13 to 16 elements, a transition element, a rare earth element, or a combination thereof, and is not Sn), and the like. In embodiments of the invention, the transition metal oxide includes vanadium oxide, lithium vanadium oxide, or the like.

The negative active material layer includes a binder, and optionally a conductive material.

The binder improves properties of binding negative active material particles with one another and the negative active materials with a current collector. The binder includes polyvinylalcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, an ethylene oxide-containing polymer, polyyvinpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, propylene, a styrene-butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, or the like, but is not limited thereto.

The conductive material is used to provide conductivity to an electrode. The conductive material can be any electrically conductive material that is used as a conductive material unless it causes a chemical change. Examples of the conductive material include a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, a carbon fiber or the like; a metal-based material of metal powder or metal fiber including copper, nickel, aluminum, silver, or the like; a conductive polymer such as polyphenylene derivatives; or a mixture thereof.

The current collector can be a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a polymer substrate coated with a conductive metal, or a combination thereof.

The positive electrode includes a current collector and a positive active material layer disposed on the current collector.
The positive active material is the same as described above.

The positive active material layer includes a binder and a conductive material. Examples of the binder include polyvinylalcohol, carboxymethylcellulose, hydroxypropylcellulose, diacetylcel-
ulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, an ethylene oxide-containing polymer, poly-
vinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, a styrene-
butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, and the like, but are not limited thereto.

The conductive material is used to provide conductivity to an electrode. In the battery including the same, it includes any suitable electrically conductive material causing no or insignificant chemical change. For example, it includes natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, a carbon fiber, a metal powder or a metal fiber or the like such as copper, nickel, aluminum, silver or the like, or conductive material such as polyphenylene derivative or the like, or a mixture of at least two thereof.

In embodiments of the invention, the current collector is Al, but is not limited thereto.

The negative and positive electrodes are fabricated by a method including mixing the active material, a con-
ductive material, and a binder into an active material composition, and coating the composition on a current collector, respectively. The electrode manufacturing method is well known, and thus is not described in detail in the present specification. The solvent includes N-methylpyrrolidone and the like, but is not limited thereto.

The electrolyte includes a non-aqueous organic solvent and a lithium salt.

The non-aqueous organic solvent serves as a medium for transmitting ions taking part in the electrochemical reaction of a battery.

The non-aqueous organic solvent includes a carbonate-based, ester-based, ether-based, ketone-based, alco-
hol-based, or aprotic solvent. The carbonate-based solvent includes dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methyl ethyl carbonate (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or the like. The ester-based solvent includes methyl acetate, ethyl acetate, n-propyl acetate, methylpropionate, ethylpropionate, γ-butyrolactone, decan-
olide, valerolactone, methanolactone, caprolactone, or the like. The ether-based solvent includes dibutyl ether, tet-
ratglyme, diglyme, dimethoxyethane, 2-methyltetrahydrafuran, tetrahydrafuran, or the like, and the ketone-based solvent include cyclohexanone, or the like. The alcohol-based solvents include ethyl alcohol, isopropyl alcohol, and the like, and the aprotic solvents include nitriles such as R-CN (wherein R is a C2 to C20 linear, branched, or cyclic hydrocarbon group including a double bond, an aromatic ring, or an ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, or the like.

The non-aqueous organic solvent is used singularly or in a mixture. When the organic solvent is used in a mixture, the mixture ratio can be controlled in accordance with a desirable battery performance.

The carbonate-based solvent is prepared by mixing a cyclic carbonate and a linear carbonate. The cyclic carbonate and the linear carbonate are mixed together in the volume ratio of about 1:1 to about 1:9. Within this range, performance of electrolyte is improved.

In addition, the non-aqueous organic solvent can be further prepared by mixing a carbonate-based solvent with an aromatic hydrocarbon-based solvent. The carbonate-based and the aromatic hydrocarbon-based solvents can be mixed together in a volume ratio ranging from about 1:1 to about 30:1.

The aromatic hydrocarbon-based organic solvent is represented by the following Chemical Formula A.

![Chemical Formula A]

In Chemical Formula A, R₁ to R₆ are each independently hydrogen, a halogen, a C1 to C10 alkyl group, a C1 to C10 haloalkyl group, or a combination thereof.

The aromatic hydrocarbon-based organic solvent can include benzene, fluorobenzene, 1,2-difluorobenzene,
1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, iodobenzene, 1,2-diodobenzene, 1,3-diodobenzene, 1,4-diodobenzene, 1,2,3-tribromobenzene, 1,2,4-tribromobenzene, toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluorotoluene, 1,4-difluorotoluene, 1,2,3-trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene, 1,2-dichlorotoluene, 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,3-trichlorotoluene, 1,2,4-trichlorotoluene, iodotoluene, 1,2-diiodotoluene, 1,3-diiodotoluene, 1,4-diiodotoluene, 1,2,3-triiodotoluene, 1,2,4-triiodotoluene, xylene, or a combination thereof.

In embodiments of the invention, the non-aqueous electrolyte further includes vinylene carbonate, or an ethylene carbonate-based compound represented by the following Chemical Formula B to improve cycle-life.

[Chemical Formula B]

\[\text{Chemical Formula B} \]

\[\begin{array}{c}
\text{O} \\
\text{O}
\end{array} \]

\[\begin{array}{c}
R_7 \\
R_8
\end{array} \]

In Chemical Formula B, \(R_7 \) and \(R_8 \) are independently selected from hydrogen, a halogen, a cyano group (CN), a nitro group (NO\(_2\)), and a C1 to C5 fluoroalkyl group, provided that at least one of \(R_7 \) and \(R_8 \) is selected from a halogen, a cyano group (CN), a nitro group (NO\(_2\)), and a C1 to C5 fluoroalkyl group.

Examples of the ethylene carbonate-based compound include difluoro ethylenecarbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and the like. The amount of the vinylene carbonate or the ethylene carbonate-based compound used to improve cycle life are adjusted within an appropriate range.

The lithium salt is dissolved in an organic solvent, supplies lithium ions in a battery, operates a basic operation of the rechargeable lithium battery, and improves lithium ion transportation between positive and negative electrodes therein. Examples of the lithium salt include LiPF\(_6\), LiBF\(_4\), LiSbF\(_6\), LiAsF\(_6\), LiCF\(_3\)SO\(_3\), LiClO\(_4\), LiAlO\(_2\), LiAlCl\(_4\), LiNg\(_x\)C\(_x\)F\(_{2x+1}\)(SO\(_2\)C\(_y\)F\(_{2y+1}\)) (where \(x \) and \(y \) are natural numbers), LiCl, LiI, LiBC\(_{3}O_{4}\), lithium bis(oxalato) borate, LiBOB, or a combination thereof, as a supporting electrolytic salt. The lithium salt is used in a concentration ranging from 0.1 M to 2.0 M. In one embodiment, when the lithium salt is included at the above concentration range, an electrolyte has excellent performance and lithium ion mobility due to desired electrolyte conductivity and viscosity.

The separator 113 includes any suitable materials commonly used in the conventional lithium battery that is capable of separating (e.g., electrically insulating) a negative electrode 112 from a positive electrode 114 and provide a transporting passage for lithium ions. In other words, it has a low resistance to ion transport and an excellent impregnation for electrolyte. For example, it is selected from glass fiber, polyester, TEFION (tetrafluoroethylene), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof. It has a form of a non-woven fabric or a woven fabric. For example, for the lithium ion battery, a polyolefin-based polymer separator such as polyethylene, polypropylene or the like is mainly used. In order to ensure the heat resistance or mechanical strength, a coated separator including a ceramic component or a polymer material can be used. Selectively, it can have a mono-layered or multi-layered structure.

The following examples illustrate the present invention in more detail. These examples, however, should not in any sense be interpreted as limiting the scope of the present invention.

(Examples)

Example 1: Preparation of positive active material

362 g of Li\(_2\)CO\(_3\) powder, 750 g of Co\(_3\)O\(_4\) powder, 0.4 g of TiO\(_2\) powder, and 2.0 g of MgCO\(_3\) powder were mixed and first fired at 1050°C for 25 hours. The fired powder was pulverized and filtered to provide a LiCoO\(_2\) doped with Ti and Mg. The obtained LiCoO\(_2\) was mixed with 0.3 g of TiO\(_2\) powder and 1.5 g of MgCO\(_3\) powder in a dry method and fired at 900°C for 20 hours and then secondary fired to provide a LiCoO\(_2\) powder doped and coated with Ti and Mg.

Example 2: Preparation of positive active material

362 g of Li\(_2\)CO\(_3\) powder, 750 g of Co\(_3\)O\(_4\) powder, 1.2 g of TiO\(_2\) powder, and 3.0 g of MgCO\(_3\) powder were
mixed and first fired at 1050°C for 25 hours. The fired powder was pulverized and filtered to provide a LiCoO₂ doped with Ti and Mg. The obtained LiCoO₂ was mixed with 1.0 g of TiO₂ powder and 2.6 g of MgCO₃ powder in a dry method and then secondary fired at 950°C for 20 hours to provide a LiCoO₂ powder doped and coated with Ti and Mg.

Example 3: Preparation of positive active material

[0095] 362 g of Li₂CO₃ powder, 750 g of Co₃O₄ powder, 0.9 g of TiO₂ powder, and 2.5 g of MgCO₃ powder were mixed and first fired at 1050°C for 25 hours. The fired powder was pulverized and filtered to provide a LiCoO₂ doped with Ti and Mg. The obtained LiCoO₂ was mixed with 0.7 g of TiO₂ powder and 2.3 g of MgCO₃ powder in a dry method and then secondary fired at 900°C for 20 hours to provide a LiCoO₂ powder doped and coated with Ti and Mg.

Comparative Example 1

[0096] 362 g of Li₂CO₃ powder and 750 g of Co₃O₄ powder were uniform mixed and fired at 950°C for 25 hours. The fired powder was pulverized and filtered to provide a LiCoO₂.

Comparative Example 2

[0097] 362 g of Li₂CO₃ powder, 750 g of Co₃O₄ powder, 1.65 g of TiO₂ powder, and 4.85 g of MgCO₃ powder were mixed and first fired at 1050°C for 25 hours. The fired powder was pulverized and filtered to provide a LiCoO₂ doped with Ti and Mg.

Comparative Example 3

[0098] 362 g of Li₂CO₃ powder and 750 g of Co₃O₄ powder were uniform mixed and fired at 950°C for 25 hours. The fired powder was pulverized and filtered to provide a LiCoO₂. The obtained LiCoO₂ was mixed with 1.65 g of TiO₂ powder and 3.65 g of MgCO₃ powder in a dry method and then secondary fired at 900°C for 20 hours to provide a LiCoO₂ powder doped and coated with Ti and Mg.

Comparative Example 4

[0099] 362 g of Li₂CO₃ powder and 750 g of Co₃O₄ powder were uniform mixed and fired at 950°C for 25 hours. The fired powder was pulverized and filtered to provide a LiCoO₂. The obtained LiCoO₂ was mixed with 1.65 g of TiO₂ powder and 4.5 g of MgCO₃ powder in a dry method and then secondary fired at 1020°C for 20 hours to provide a LiCoO₂ powder doped and coated with Ti and Mg.

Experiment Example 1 (Evaluation of A/B)

(Measurement of B)

[0100] The positive active materials obtained from Examples 1 to 3 and Comparative Examples 2 to 4 were measured for weight ratios (wt%) of components of Co, Ti, and Mg using an Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and each weight ratio was divided by the molecular weight of each component to calculate the molar number of each component. Thereby, the ratio (B) of the sum molar number of Ti and Mg to the molar number of Co was calculated as follows:

\[
B = \frac{(\text{Ti molar number} + \text{Mg molar number})}{\text{Co molar number}}
\]

(Measurement of A)

[0101] Using an X-ray Photoelectron Spectroscopy (XPS), atomic % (at%) of Co, Ti, and Mg components was analyzed on the surface of the particle to calculate the component ratio. Then the ratio (A) was calculated by the following formula:

\[
A = \frac{(\text{Ti at%} + \text{Mg at%})}{\text{(Co at%)}}
\]
The analysis results are shown in the following Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Entire analysis of active material (ICP-AES) wt%</th>
<th>Surface analysis of active material (XPS): [at%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co</td>
<td>Ti</td>
</tr>
<tr>
<td>Example 1</td>
<td>59.2</td>
<td>0.04</td>
</tr>
<tr>
<td>Example 2</td>
<td>58.5</td>
<td>0.122</td>
</tr>
<tr>
<td>Example 3</td>
<td>58.5</td>
<td>0.09</td>
</tr>
<tr>
<td>Comparative Example 2</td>
<td>59.0</td>
<td>0.09</td>
</tr>
<tr>
<td>Comparative Example 3</td>
<td>58.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Comparative Example 4</td>
<td>58.8</td>
<td>0.09</td>
</tr>
</tbody>
</table>

A/B was calculated from the results of Table 1 and shown in the following Table 2.

<table>
<thead>
<tr>
<th></th>
<th>A/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>18.7</td>
</tr>
<tr>
<td>Example 2</td>
<td>31.8</td>
</tr>
<tr>
<td>Example 3</td>
<td>40.1</td>
</tr>
</tbody>
</table>

While the surface of positive active material obtained from Comparative Example 4 was sputtered with Ar, the contents (wt%) of Ti and Mg components were XPS analyzed and shown in FIG. 3. The Ar sputtering time shown in FIG. 3 is corresponded to the depth from the surface of the particle, so the graph results of FIG. 3 are considered as the atom concentration (at%) analysis results of Ti and Mg components according to the depth from the surface of the particle to the center. The Ar sputtering intensity indicates the intensity capable of sputtering in a level of about 5nm per minute, so it is confirmed that dopant was not in (i.e., does not exist in) the depth of about 0.25 μm in a direction of from the surface to the center from the results for 3000 seconds.

Experimental Example 2

The cross-sectional surface of positive active material obtained from Example 2 was observed using a Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), and the concentrations of Ti and Mg of the inner part were analyzed. FIG. 2A and FIG. 2B show SEM-EDS analysis results. As shown in FIG. 2A, the diameter of the particle was separated by a set or predetermined gap within 40 points, and the concentration (wt%) at each point was analyzed, and the results are shown in FIG. 2B.

From FIG. 2B, the concentration difference of each Ti and Mg was within about 0.04 wt% at the set or predetermined 2 points in the inner part of the particle (i.e., the inner part inside the interface shown by the dashed line), so it is understood that the concentrations of dopants of Ti and Mg were uniform in the inner part.

Example 4: Fabrication of coin cell

(Fabrication of positive electrode)

The positive active material obtained from Example 1, a binder of polyvinylidene fluoride, and a conductive material of carbon black were mixed at a weight ratio of 94:3:3 in a N-methylpyrrolidone solvent to provide a slurry of positive active material layer. The slurry of positive active material layer was coated on a positive electrode current collector of Al foil to provide a thin plate and dried at about 120°C for 1 hour and pressed to provide a positive electrode including a positive active material layer.
A Li foil was used as a negative active material to provide a negative electrode.

The obtained positive electrode, the negative electrode, a polyethylene separator having a thickness of 20 \(\mu\)m, and an electrolyte solution (a mixture of EC (ethylene carbonate) and EMC (ethylmethyl carbonate) and DMC (dimethyl carbonate) (volume ratio of EM:EMC:DMC: 3:3:4) + 1.15 M of \(\text{LiPF}_6\)) were assembled to provide a coin cell.

Example 5: Fabrication of coin cell

A coin cell was fabricated in accordance with the same procedure as in Example 4, except that the positive active material according to Example 2 was used.

Example 6: Fabrication of coin cell

A coin cell was fabricated in accordance with the same procedure as in Example 4, except that the positive active material according to Example 3 was used.

Comparative Example 5: Fabrication of coin cell

A coin cell was fabricated in accordance with the same procedure as in Example 4, except that the positive active material according to Comparative Example 1 was used.

Comparative Example 6: Fabrication of coin cell

A coin cell was fabricated in accordance with the same procedure as in Example 4, except that the positive active material according to Comparative Example 2 was used.

Comparative Example 7: Fabrication of coin cell

A coin cell was fabricated in accordance with the same procedure as in Example 4, except that the positive active material according to Comparative Example 3 was used.

Comparative Example 8: Fabrication of coin cell

A coin cell was fabricated in accordance with the same procedure as in Example 4, except that the positive active material according to Comparative Example 4 was used.

Experimental Example 3: Evaluation of cycle-life characteristics

Each rechargeable lithium battery cell obtained from Examples 4 to 6 and Comparative Examples 5 to 8 was charged at a room temperature at cut-off of CC-CV of 0.8 C, 4.2 V, 100 mA and discharged at cut-off of 1.0 C, 3.0 V to set a 1 cycle. It was repeated for 300 cycles to evaluate the cycle-life characteristics. FIG. 4 shows the discharge capacity depending upon the number of cycles, and FIG. 5 shows the average voltage depending upon the number of cycles.

While this invention has been described in connection with what is presently considered to be practical embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, and equivalents thereof.

Claims

1. A positive active material for a rechargeable lithium battery, comprising:

 a compound represented by the following Chemical Formula 1, wherein a surface part of a particle of the positive active material has a mole ratio \([\text{Me}/\text{M}] (A)\) of an element
represented by Me to an element represented by M in the following Chemical Formula 1 of $0.05 \leq A \leq 0.60$;
wherein the entire particle has a mole ratio $[\text{Me}/\text{M}]$ (B) of the element represented by Me to the element represented by M in the following Chemical Formula 1 of $0.003 \leq B \leq 0.012$; and
wherein the or each element represented by Me has a concentration difference between two positions of less than or equal to about 0.04 wt% in an inner part of the particle,

$$\text{Chemical Formula 1} \quad \text{Li}_{1+x}M_{1-k}M_kO_2$$

wherein, $-0.2 \leq x \leq 0.2$, $0 < k \leq 0.05$

M is one selected from Ni, Mn, Co, and a combination thereof,
Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and
M is not the same element as Me or does not comprise the same element as Me.

2. A rechargeable lithium battery, comprising
a positive electrode comprising a positive active material;
a negative electrode comprising a negative active material; and
a non-aqueous electrolyte,
wherein the positive active material comprises a compound represented by the following Chemical Formula 1,
wherein a surface part of a particle of the positive active material has a mole ratio $[\text{Me}/\text{M}]$ (A) of element represented by Me to element represented by M in the following Chemical Formula 1 of $0.055 \leq A \leq 0.60$;
wherein the entire particle has a mole ratio $[\text{Me}/\text{M}]$ (B) of element represented by Me to the element represented by M in the following Chemical Formula 1 of $0.003 \leq B \leq 0.012$; and
wherein the or each element represented by Me has a concentration difference of between two positions of less than or equal to about 0.04 wt% in an inner part of the particle,

$$\text{Chemical Formula 1} \quad \text{Li}_{1+x}M_{1-k}M_kO_2$$

wherein, $-0.2 \leq x \leq 0.2$, $0 < k \leq 0.05$

M is one selected from Ni, Mn, Co, and a combination thereof,
Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and
M is not the same element as Me or does not comprise the same element as Me.

3. The positive active material of claim 1 or the rechargeable lithium battery of claim 2, wherein A/B is $10 \leq A/B \leq 100$, optionally wherein A/B is $25 \leq A/B \leq 70$ or $30 \leq A/B \leq 50$.

4. The positive active material of claim 1 or claim 3 or the rechargeable lithium battery of claims 2 and 3,
wherein the surface part and the inner part are partitioned by an interface positioned in a depth identical from the surface of the particle to the center of the particle;
wherein the surface part is designated as from the surface of the particle to an upper face of the interface, and the inner part is designated as from a lower face of the interface to the center of the particle; and
wherein the interface is positioned in the depth of about 3nm to about 10nm from the surface of the particle to the center of the particle.

5. The positive active material of claim 1 or claims 3 to 4 or the rechargeable lithium battery of claims 2 to 4, wherein the element represented by Me has a concentration gradient decreasing from the surface of the particle to the center of the particle.

6. The positive active material of claim 1 or claims 2 to 5 or the rechargeable lithium battery of claims 2 to 5, wherein the element represented by Me in Chemical Formula 1 has a concentration of about 0.01 wt% to about 0.50 wt% in the inner part of the particle, optionally wherein the element represented by Me in Chemical Formula 1 has a concentration of about 0.05 wt% to about 0.30 wt%.

7. The positive active material of claim 1 or claims 2 to 6 or the rechargeable lithium battery of claims 2 to 6, wherein in the above Chemical Formula 1, M is Co.

8. The positive active material of claim 1 or claims 2 to 7 or the rechargeable lithium battery of claims 2 to 7, wherein the positive active material has an average particle diameter of about 5μm to about 20μm.
9. The rechargeable lithium battery of claims 2 to 8, wherein the negative active material is a material for reversibly intercalating and deintercalating lithium ions, a lithium metal, a lithium metal alloy, a material for doping and dedoping lithium, or a transition metal oxide.

10. The rechargeable lithium battery of claims 2 to 9, wherein the non-aqueous electrolyte comprises a non-aqueous organic solvent selected from a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and aprotic solvent, and a combination thereof.

11. A method of preparing a positive active material for a rechargeable lithium battery comprising a compound represented by the following chemical Formula 1 according to claim 1, the method comprising:

 mixing a Li raw material, a raw material of element represented by M, wherein M is one selected from Ni, Mn, Co, and a combination thereof, and a raw material of element represented by Me\(^1\), wherein Me\(^1\) is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and firing the same to provide a primary particle of compound comprising Li, M, and Me\(^1\); and

 coating the primary particle with a raw material of element represented by Me\(^2\), wherein Me\(^2\) is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and firing the same to provide a secondary particle of compound comprising Li, M and Me\(^1\) and Me\(^2\),

 \[\text{Chemical Formula 1} \quad \text{Li}_{1+x}\text{M}_{1-k}\text{Me}_k\text{O}_{2-0.2} \quad 0.2 \leq x \leq 0.2, \quad 0 < k \leq 0.05 \]

 wherein M is one selected from Ni, Mn, Co, and a combination thereof, Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and

 M is not the same element as Me or does not comprise the same element as Me.

12. The method of claim 11, wherein the firing to provide the secondary particle comprises mixing the primary particle with the raw material of element represented by Me\(^2\) and firing at about 600 to about 1000°C for about 10 hours to about 30 hours.

13. The method of claim 11 or claim 12, wherein the firing to provide the primary particle comprises firing at about 950°C to about 1100°C for about 10 hours to about 30 hours.
FIG. 2B

[Graph showing data points for Ti and Mg with wt. % on the y-axis and point on the x-axis.]
FIG. 3
FIG. 4

Discharge Capacity (mAh) vs Cycle No for Examples 1, 2, 3, and Comparative Examples 1, 2, 3, 4.
EUROPEAN SEARCH REPORT

EP 13 16 0783

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2011/043296 A1 (NIPPON CHEMICAL IND [JP]; 00ISHI YOSHIHIDE [JP]) 14 April 2011 (2011-04-14)</td>
<td>1-10</td>
<td>INV. H01M4/505 H01M4/525</td>
</tr>
<tr>
<td>A</td>
<td>* abstract; figure 1; tables 2-6 *</td>
<td>11-13</td>
<td>C01G45/02</td>
</tr>
<tr>
<td>X, P</td>
<td>US 2012/273707 A1 (00ISHI YOSHIHIDE [JP]) 1 November 2012 (2012-11-01)</td>
<td>1-10</td>
<td>C01G51/04</td>
</tr>
<tr>
<td></td>
<td>* figure 1; tables 2-6 *</td>
<td></td>
<td>C01G45/12</td>
</tr>
<tr>
<td></td>
<td>* paragraph [0038] - paragraph [0039] *</td>
<td></td>
<td>ADD. H01M10/052</td>
</tr>
<tr>
<td></td>
<td>* paragraph [0042] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0062] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0065] - paragraph [0071] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0088] - paragraph [0089] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* paragraph [0017] *</td>
<td>11-13</td>
<td>HO1M</td>
</tr>
<tr>
<td></td>
<td>* paragraph [0053] - paragraph [0054] *</td>
<td></td>
<td>C01G</td>
</tr>
<tr>
<td></td>
<td>* paragraph [0063] - paragraph [0066] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0095] - paragraph [0100] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0101] - paragraph [0103] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0107] - paragraph [0109] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0040] - paragraph [0041] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* table 1 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0083] - paragraph [0085] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0011] - paragraph [0026] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0028] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0035] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0068] - paragraph [0087] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: The Hague
Date of completion of the search: 6 December 2013
Examiner: Maxisch, Thomas
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TECHNICAL FIELDS SEARCHED (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hague</td>
<td>6 December 2013</td>
<td>Maxisch, Thomas</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: member of the same patent family, corresponding document
- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **P**: intermediate document
- **Q**: non-written disclosure
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 20120092605 A</td>
<td>21-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012273737 A1</td>
<td>01-11-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011043296 A1</td>
<td>14-04-2011</td>
</tr>
<tr>
<td>US 2012273737 A1</td>
<td>01-11-2012</td>
<td>CN 102576872 A</td>
<td>11-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120092605 A</td>
<td>21-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012273737 A1</td>
<td>01-11-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011043296 A1</td>
<td>14-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007231695 A1</td>
<td>04-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011256453 A1</td>
<td>20-10-2011</td>
</tr>
<tr>
<td>WO 2012011785 A2</td>
<td>26-01-2012</td>
<td>CN 103168381 A</td>
<td>19-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013535771 A</td>
<td>12-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2012009891 A</td>
<td>02-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013183583 A1</td>
<td>18-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012011785 A2</td>
<td>26-01-2012</td>
</tr>
<tr>
<td>US 2013183583 A1</td>
<td>18-07-2013</td>
<td>CN 103168381 A</td>
<td>19-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013535771 A</td>
<td>12-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2012009891 A</td>
<td>02-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013183583 A1</td>
<td>18-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012011785 A2</td>
<td>26-01-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 49099347 B2</td>
<td>04-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012079703 A</td>
<td>19-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080038163 A</td>
<td>02-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200822424 A</td>
<td>16-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008248391 A1</td>
<td>09-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007142275 A1</td>
<td>13-12-2007</td>
</tr>
<tr>
<td>JP 2003331841 A</td>
<td>21-11-2003</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82